Skip to main content

Advertisement

Log in

Biology and Clinical Significance of Tartrate-Resistant Acid Phosphatases: New Perspectives on an Old Enzyme

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Type 5 tartrate-resistant acid phosphatase (TRAP) has been a clinically relevant biomarker for about 50 years. It has always been a reliable and specific cytochemical marker for hairy cell leukemia and for differentiated cells of monocytic lineage. Only recently has the test for serum TRAP activity been accepted as sensitive and specific enough for clinical use as a marker of osteoclasts and bone resorption. This has come about through steady advances in knowledge about TRAP enzymology, structure, function, and molecular regulation and a consequent appreciation that TRAP isoforms 5a and 5b have very different clinical significance. As a measure of osteoclast number and bone resorption, TRAP 5b has diagnostic and prognostic applications in osteoporosis, cancers with bone metastasis, chronic renal failure, and perhaps other metabolic and pathologic bone diseases. Serum TRAP 5a, on the other hand, has no relationship to bone metabolism but seems instead to be a measure of activated macrophages and chronic inflammation. Exploration of the real clinical usefulness of serum TRAP 5a for diagnosis and disease management in a wide variety of chronic inflammatory diseases is only now beginning. This perspective traces the important basic scientific developments that have led up to the refinement of serum TRAP isoform immunoassays and their validation as biomarkers of disease. Many unanswered questions remain, providing a wealth of opportunity for continued research of this multifaceted enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yam LT (1974) Clinical significance of the human acid phosphatases. Am J Med 56:604–616

    Article  PubMed  CAS  Google Scholar 

  2. Antanaitis BC, Aisen P (1983) Uteroferrin and the purple acid phosphatases. Adv Inorg Biochem 5:111–136

    PubMed  CAS  Google Scholar 

  3. Drexler HG, Gignac SM (1994) Characterization and expression of tartrate-resistant acid phosphatase (TRAP) in hemopoietic cells. Leukemia 8:359–368

    PubMed  CAS  Google Scholar 

  4. Lamp EC, Drexler HG (2000) Biology of tartrate-resistant acid phosphatase. Leuk Lymphoma 39:477–484

    PubMed  CAS  Google Scholar 

  5. Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA (2000) Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone 27:575–584

    Article  PubMed  CAS  Google Scholar 

  6. Mose S, Menzel C, Kurth AA, Obert K, Ramm U, Eberlein K, Boettcher HD, Pichlmeier U (2005) Evaluation of tartrate-resistant acid phosphatase (TRAP) 5b as bone resorption marker in irradiated bone metastasis. Anticancer Res 25:4639–4646

    PubMed  CAS  Google Scholar 

  7. Halleen JM, Tiitinen SL, Ylipahkala H, Fagerlund KM, Vaananen HK (2006) Tartrate-resistant acid phosphatase 5b (TRAP 5b) as a marker of bone resorption. Clin Lab 52:499–509

    PubMed  CAS  Google Scholar 

  8. Gutman AB, Gutman EB (1938) An “acid” phosphatase occurring in the serum of patients with metastasizing carcinoma of the prostate gland. J Clin Invest 17:473–478

    Article  PubMed  CAS  Google Scholar 

  9. Gutman AB (1968) The development of the acid phosphatase test for prostatic carcinoma. Bull N Y Acad Med 44:63–76

    PubMed  CAS  Google Scholar 

  10. Burstone MS (1959) Chemical demonstration of acid phosphatase activity in osteoclasts. J Histochem Cytochem 7:39–41

    PubMed  CAS  Google Scholar 

  11. Wergedal JE (1970) Characterization of bone acid phosphatase activity. Proc Soc Exp Biol Med 134:224–227

    Google Scholar 

  12. Hanker JS, Hammarstrom LE, Toverud SU (1971) Functional distribution of acid phosphatase in developing bones and teeth. J Dent Res 50:1502–1503

    PubMed  CAS  Google Scholar 

  13. Lieberherr M, Vreven J, Vaes G (1973) The acid and alkaline phosphatases, inorganic pyrophosphatases and phosphoprotein phosphatase of bone. I. Characterization and assay. Biochim Biophys Acta 293:160–169

    PubMed  CAS  Google Scholar 

  14. Li CY, Yam LT, Lam KW (1970) Acid phosphatase isoenzyme in human leukocytes in normal and pathological conditions. J Histochem Cytochem 18:473–481

    PubMed  CAS  Google Scholar 

  15. Li CY, Yam LT, Lam KW (1970) Studies of acid phosphatase isoenzymes in human leukocytes: demonstration of isoenzyme cell specificity. J Histochem Cytochem 18:901–910

    PubMed  CAS  Google Scholar 

  16. Taira A, Merrick G, Wallner K, Dattoli M (2007) Reviving the acid phosphatase test for prostate cancer. Oncology 21:1003–1010

    PubMed  Google Scholar 

  17. Yam LT, Li CY, Lam KW (1971) Tartrate-resistant acid phosphatase isoenzymes in the reticulum cells of leukemic reticuloendotheliosis. N Engl J Med 284:367–369

    Google Scholar 

  18. Lam KW, Lee P, Li CY, Yam LT (1980) Immunological and biochemical evidence for identity of tartrate-resistant isoenzymes of acid phosphatases from human serum and tissues. Clin Chem 26:420–422

    PubMed  CAS  Google Scholar 

  19. Minkin C (1982) Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 34:285–290

    Article  PubMed  CAS  Google Scholar 

  20. Štĕpán JJ, Silinková-Málková E, Havránek T, Formánková J, Zichová M, Lachmanová J, Straková M, Broulik P, Pacovsky V (1983) Relationship of plasma tartrate-resistant acid phosphatase to the bone isoenzyme of serum alkaline phosphatase in hyperparathyroidism. Clin Chim Acta 30:189–200

    Google Scholar 

  21. Lau KH, Onishi T, Werdegal JE, Singer FR, Baylink DJ (1987) Characterization and assay of tartrate-resistant acid phosphatase activity in serum: potential use to assess bone resorption. Clin Chem 33:458–462

    PubMed  CAS  Google Scholar 

  22. Štĕpán J, Lachmanová J, Straková M, Pacovsky V (1987) Serum osteocalcin, bone alkaline phosphatase isoenzyme and plasma tartrate-resistant acid phosphatase in patients on chronic maintenance hemodialysis. Bone Miner 3:177–183

    PubMed  Google Scholar 

  23. Štĕpán JJ, Pospíchal J, Schreiber V, Kanka J, Mensik J, Presl J, Pacovsky V (1989) The application of plasma tartrate-resistant acid phosphatase to assess changes in bone response to artificial menopause and its treatment with estrogen or norethisterone. Calcif Tissue Int 45:273–280

    Article  PubMed  Google Scholar 

  24. Torres R, de la Piedra C, Rapado A (1991) Clinical usefulness of serum tartrate-resistant acid phosphatase in Paget’s disease of bone: correlation with other biochemical markers of bone remodeling. Calcif Tissue Int 49:14–16

    Article  PubMed  CAS  Google Scholar 

  25. Scarneccia L, Minisola S, Pacitti MT, Carnevale V, Romagnoli E, Rosso R, Mazzuoli GF (1991) Clinical usefulness of serum tartrate-resistant acid phosphatase activity determination to evaluate bone turnover. Scand J Clin Lab Invest 51:517–524

    Article  Google Scholar 

  26. Tavassoli M, Rizo M, Yam LT (1980) Elevation of serum acid phosphatase in cancers with bone metastasis. Cancer 45:2400–2403

    Article  PubMed  CAS  Google Scholar 

  27. Lam KW, Dannaher C, Letchford S, Eastlund T, Li CY, Yam LT (1984) Tartrate-resistant acid phosphatase in serum of cancer patients. Clin Chem 30:457–459

    PubMed  CAS  Google Scholar 

  28. Monti M, Scazzoso A, Calzaferri G, Santi I, D’Aprile E, Cunietti E (1990) Tartrate-resistant acid phosphatase (TRAP) activity in serum: potential use in assessing bone resorption in patients with multiple myeloma. Int J Biol Markers 5:61–64

    PubMed  CAS  Google Scholar 

  29. Desoize B, Amico S, Larbre H, Coninx P, Jardillier JC (1991) Phosphatase isoenzymes as bone metastasis markers in prostatic carcinoma. Clin Biochem 24:443–446

    Article  PubMed  CAS  Google Scholar 

  30. Lam KW, Eastlund T, Lin CY, Yam LT (1978) Biochemical properties of the tartrate-resistant acid phosphatase in serum of adults and children. Clin Chem 24:1106–1108

    Google Scholar 

  31. Chen J, Yam LT, Janckila AJ, Li CY, Lam KW (1979) Significance of “high” acid phosphatase activity in the serum of normal children. Clin Chem 25:719–722

    PubMed  CAS  Google Scholar 

  32. Štĕpán JJ, Tesařová A, Havránek T, Jodl J, Formánková J, Pacovsky V (1985) Age and sex dependency of the biochemical indices of bone remodeling. Clin Chim Acta 151:273–283

    Article  PubMed  Google Scholar 

  33. Li CY, Yam LT, Crosby WH (1972) Histochemical characterization of cellular and structural elements of the human spleen. J Histochem Cytochem 20:1049–1058

    PubMed  CAS  Google Scholar 

  34. Radzun HJ, Kreipe H, Parwaresch MR (1983) Tartrate-resistant acid phosphatase as a differentiation marker for the human mononuclear phagocyte system. Hematol Oncol 1:321–327

    Article  PubMed  CAS  Google Scholar 

  35. Snipes RG, Lam KW, Dodd RC, Gray TK, Cohen MS (1986) Acid phosphatase activity in mononuclear phagocytes and the U937 cell line: monocyte-derived macrophages express tartrate-resistant acid phosphatase. Blood 67:729–734

    PubMed  CAS  Google Scholar 

  36. Moss DW (1992) Changes in enzyme expression related to differentiation and regulatory factors: the acid phosphatase of osteoclasts and other macrophages. Clin Chim Acta 209:131–138

    Article  PubMed  CAS  Google Scholar 

  37. Lam KW, Li CY, Yam LT, Desnick RJ (1981) Comparison of the tartrate-resistant acid phosphatase in Gaucher’s disease and leukemic reticuloendotheliosis. Clin Biochem 14:177–181

    Article  PubMed  CAS  Google Scholar 

  38. Halleen J, Hentunen TA, Hellman J, Väänänen HK (1996) Tartrate-resistant acid phosphatase from human bone: purification and development of an immunoassay. J Bone Miner Res 11:1444–1452

    Article  PubMed  CAS  Google Scholar 

  39. Janckila AJ, Takahashi K, Sun SZ, Yam LT (2001) Tartrate-resistant acid phosphatase isoform 5b as a serum marker for osteoclastic activity. Clin Chem 47:74–80

    PubMed  CAS  Google Scholar 

  40. Anderson TR, Toverud SU (1986) Purification and characterization of purple acid phosphatase from developing rat bone. Arch Biochem Biophys 247:131–139

    Article  PubMed  CAS  Google Scholar 

  41. Hayman AR, Warburton MJ, Pringle JAS, Coles B, Chambers TJ (1989) Purification and characterization of a tartrate-resistant acid phosphatase from human osteoclastomas. Biochem J 261:601–609

    PubMed  CAS  Google Scholar 

  42. Lam KW, Yam LT (1977) Biochemical characterization of the tartrate-resistant acid phosphatase of human spleen with leukemic reticuloendotheliosis as a pyrophosphatase. Clin Chem 23:89–94

    PubMed  CAS  Google Scholar 

  43. Davis JC, Lin SL, Averill BA (1981) Kinetics and optical spectroscopic studies on the purple acid phosphatase from beef spleen. Biochemistry 20:4062–4067

    Article  PubMed  CAS  Google Scholar 

  44. Hara A, Sawada H, Kato T, Nakayama T, Yamamoto H, Matsumoto Y (1984) Purification and characterization of a purple acid phosphatase from rat spleen. J Biochem 95:67–74

    PubMed  CAS  Google Scholar 

  45. Ketcham CM, Baumbach GA, Bazer FW, Roberts RM (1985) The type 5, acid phosphatase from spleen of humans with hairy cell leukemia. Purification, properties, immunological characterization, and comparison with porcine uteroferrin. J Biol Chem 260:5768–5776

    PubMed  CAS  Google Scholar 

  46. Štĕpán JJ, Lau KHW, Kraenzlin M, Baylink DJ (1989) Purification and N-terminal sequence of two tartrate-resistant acid phosphatases type 5 from the hairy cell leukemia spleen. Biochem Biophys Res Commun 165:1027–1034

    Article  PubMed  Google Scholar 

  47. Janckila AJ, Latham MD, Lam KW, Chow KC, Li CY, Yam LT (1992) Heterogeneity of hairy cell tartrate-resistant acid phosphatase. Clin Biochem 25:437–443

    Article  PubMed  CAS  Google Scholar 

  48. Orlando JL, Zirino T, Quirk BJ, Averill BA (1993) Purification and properties of the native form of the purple acid phosphatase from bovine spleen. Biochemistry 32:8120–8129

    Article  PubMed  CAS  Google Scholar 

  49. Ek-Rylander B, Barkhem T, Ljusberg J, Öhman L, Andersson KK, Andersson G (1997) Comparative studies of rat recombinant purple acid phosphatase and bone tartrate-resistant acid phosphatase. Biochem J 321:305–311

    PubMed  CAS  Google Scholar 

  50. Schlosnagle DC, Bazer FW, Tsibris JCM, Roberts RM (1974) An iron-containing phosphatase induced by progesterone in the uterine fluids of pigs. J Biol Chem 249:7574–7579

    PubMed  CAS  Google Scholar 

  51. Baumbach GA, Saunders PTK, Ketcham CM, Bazer FW, Roberts RM (1991) Uteroferrin contains complex and high mannose-type oligosaccharides when synthesized in vitro. Mol Cell Biochem 105:107–117

    Article  PubMed  CAS  Google Scholar 

  52. Hayman AR, Dryden AJ, Chambers TJ, Warburton MJ (1991) Tartrate-resistant acid phosphatase from human osteoclastomas is translated as a single polypeptide. Biochem J 277:631–634

    PubMed  CAS  Google Scholar 

  53. Janckila AJ, Parthasarathy RN, Parthasarathy LK, Seelan RS, Hsueh YC, Rissanen J, Alatalo SL, Halleen JM, Yam LT (2005) Properties and expression of human tartrate-resistant acid phosphatase isoform 5a by monocyte-derived cells. J Leukoc Biol 77:209–218

    Article  PubMed  CAS  Google Scholar 

  54. Ljusberg J, Ek-Rylander B, Andersson G (1999) Tartrate-resistant purple acid phosphatase is synthesized as a latent proenzyme and activated by cysteine proteinases. Biochem J 343:63–69

    Article  PubMed  CAS  Google Scholar 

  55. Funhoff EG, Ljusberg J, Wang Y, Andersson G, Averill BA (2001) Mutational analysis of the interaction between active site residues and the loop region in mammalian purple acid phosphatases. Biochemistry 40:11614–11622

    Article  PubMed  CAS  Google Scholar 

  56. Ljusberg J, Wang Y, Lång P, Norgård M, Dodds R, Hultenby K, Ek-Rylander B, Andersson G (2005) Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. J Biol Chem 280:28370–28381

    Article  PubMed  CAS  Google Scholar 

  57. Fagerlund KM, Ylipahkala H, Tiitinen SL, Janckila AJ, Hamilton S, Mäentausta O, Väänänen HK, Halleen JM (2006) Effects of proteolysis and reduction on phosphatase and ROS-generating activity of human tartrate-resistant acid phosphatase. Arch Biochem Biophys 449:1–7

    Article  PubMed  CAS  Google Scholar 

  58. Ketcham CM, Roberts RM, Simmen RCM, Nick HS (1989) Molecular cloning of the type 5, iron-containing, tartrate-resistant acid phosphatase from human placenta. J Biol Chem 264:557–563

    PubMed  CAS  Google Scholar 

  59. Lord DK, Cross NCP, Bevilacqua MA, Rider SH, Gorman PA, Groves AV, Moss DW, Sheer D, Cox TM (1990) Type 5 acid phosphatase. Sequence, expression and chromosomal localization of a differentiation-associated protein of the human macrophage. Eur J Biochem 189:287–293

    Article  PubMed  CAS  Google Scholar 

  60. Ek-Rylander B, Bill P, Norgård M, Nilsson S, Andersson G (1991) Cloning, sequence and developmental expression of a type 5, tartrate-resistant, acid phosphatase of rat bone. J Biol Chem 266:24684–24689

    PubMed  CAS  Google Scholar 

  61. Ling P, Roberts RM (1993) Uteroferrin and intracellular tartrate-resistant acid phosphatases are products of the same gene. J Biol Chem 268:6896–6902

    PubMed  CAS  Google Scholar 

  62. Wang Y, Norgård M, Andersson G (2005) N-Glycosylation influences the latency and catalytic properties of mammalian purple acid phosphatase. Arch Biochem Biophys 435:147–156

    Article  PubMed  CAS  Google Scholar 

  63. Kawaguchi T, Nakano T, Sasagawa K, Ohashi T, Miura T, Komoda T (2008) Tartrate-resistant acid phosphatase 5a and 5b contain distinct sugar moieties. Clin Biochem 41:1245–1249

    Article  PubMed  CAS  Google Scholar 

  64. Schenk G, Guddat LW, Ge Y, Carrington LE, Hume DA, Hamilton S, deJersey J (2000) Identification of mammalian-like purple acid phosphatases in a wide range of plants. Gene 250:117–125

    Article  PubMed  CAS  Google Scholar 

  65. Nakazato H, Okamato T, Nishikoori M, Washio K, Morita N, Haraguchi K, Thompson GA Jr, Okuyama H (1998) The glycosylphosphatidylinositol-anchored phosphatase from Spirodela oligorrhiza is a purple acid phosphatase. Plant Physiol 118:1015–1020

    Article  PubMed  CAS  Google Scholar 

  66. Schenk G, Korsinczky MLJ, Hume DA, Hamilton S, deJersey J (2000) Purple acid phosphatases from bacteria: similarities to mammalian and plant enzymes. Gene 255:419–424

    Article  PubMed  CAS  Google Scholar 

  67. Kato T, Hara A, Nakayama T, Sawada H, Hamatake M, Matsumoto Y (1986) Purification and characterization of purple acid phosphatase from rat bone. Comp Biochem Physiol B Biochem Mol Biol 83:813–817

    Article  CAS  Google Scholar 

  68. Lau KH, Freeman TK, Baylink DJ (1987) Purification and characterization of an acid phosphatase that displays phosphotyrosyl-protein phosphatase activity from bovine cortical bone matrix. J Biol Chem 262:1389–1397

    PubMed  CAS  Google Scholar 

  69. Štĕpán JJ, Lau KHW, Mohan S, Singer FR, Baylink DJ (1990) Purification and N-terminal amino acid sequence of the tartrate-resistant acid phosphatase from human osteoclastoma: evidence for a single structure. Biochem Biophys Res Commun 168:792–800

    Article  PubMed  Google Scholar 

  70. Ek-Rylander B, Bergman T, Andersson G (1991) Characterization of a tartrate-resistant acid phosphatase (ATPase) from rat bone: hydrodynamic properties and N-terminal amino acid sequence. J Bone Miner Res 6:365–373

    Article  PubMed  CAS  Google Scholar 

  71. Robinson DB, Glew RH (1981) Substrate specificity of Gaucher spleen phosphoproteins phosphatase. Arch Biochem Biophys 210:186–199

    Article  PubMed  CAS  Google Scholar 

  72. Igarashi Y, Lee MY, Matsuzaki S (2001) Heparin column analysis of serum type 5 tartrate-resistant acid phosphatase isoforms. J Chromatogr B Biomed Sci Appl 757:269–276

    Article  PubMed  CAS  Google Scholar 

  73. Hayman AR, Cox TM (1994) Purple acid phosphatase of the human macrophage and osteoclast. Characterization, molecular properties and crystallization of the recombinant di-iron-oxo protein secreted by baculovirus-infected insect cells. J Biol Chem 269:1294–1300

    PubMed  CAS  Google Scholar 

  74. Janckila AJ, Parthasarathy RN, Parthasarathy LK, Seelan RS, Yam LT (2002) Stable expression of human tartrate-resistant acid phosphatase isoforms by CHO cells. Clin Chim Acta 326:113–122

    Article  PubMed  CAS  Google Scholar 

  75. Kaija H, Jia J, Lindqvist Y, Andersson GN, Vihko PT (1999) Tartrate-resistant acid phosphatase: large scale production and purification of the recombinant enzyme, characterization and crystallization. J Bone Miner Res 14:424–430

    Article  PubMed  CAS  Google Scholar 

  76. Sträter N, Fröhlich R, Schiemann A, Krebs B, Körner M, Suerbaum H, Witzel H (1992) Crystallization and preliminary crystallographic data of purple acid phosphatase from red kidney bean. J Mol Biol 224:511–513

    Article  PubMed  Google Scholar 

  77. Durmus A, Eicken C, Sift BH, Kratel A, Kappl R, Hűttermann J, Krebs B (1999) The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas). Metal content and spectroscopic characterization. Eur J Biochem 260:709–716

    Article  PubMed  CAS  Google Scholar 

  78. Uppenberg J, Lindqvist F, Svensson C, Ek-Rylander B, Andersson G (1999) Crystal structure of a mammalian purple acid phosphatase. J Mol Biol 290:201–211

    Article  PubMed  CAS  Google Scholar 

  79. Lindqvist Y, Johansson E, Kaija H, Vihko P, Schneider G (1999) Three-dimensional structure of a mammalian purple acid phosphatase at 2.2 A resolution with a m-(Hydr)oxo bridged di-iron center. J Mol Biol 291:135–147

    Article  PubMed  CAS  Google Scholar 

  80. Sträter N, Jasper B, Scholte M, Krebs B, Duff AP, Langley DB, Han R, Averill BA, Freeman HC, Guss JM (2005) Crystal structures of recombinant human purple acid phosphatase with and without an inhibitory conformation of the repression loop. J Mol Biol 351:233–246

    Article  PubMed  CAS  Google Scholar 

  81. Davis JC, Averill BA (1982) Evidence for a spin-coupled binuclear iron unit at the active site of the purple acid phosphatase from beef spleen. Proc Natl Acad Sci USA 79:4623–4627

    Article  PubMed  CAS  Google Scholar 

  82. Merkx M, Averill BA (1998) The activity of oxidized bovine spleen purple acid phosphatase is due to an Fe(III)Zn(II) “impurity”. Biochemistry 37:11223–11231

    Article  PubMed  CAS  Google Scholar 

  83. Wynne CJ, Hamilton SE, Dionysius DA, Beck JL, de Jersey J (1995) Studies of the catalytic mechanism of pig purple acid phosphatase. Arch Biochem Biophys 319:133–141

    Article  PubMed  CAS  Google Scholar 

  84. Janckila AJ, Woodford TA, Lam KW, Li CY, Yam LT (1992) Protein-tyrosine phosphatase activity of hairy cell tartrate-resistant acid phosphatase. Leukemia 6:199–203

    PubMed  CAS  Google Scholar 

  85. Valizadeh M, Schenk G, Nash K, Oddie GW, Guddat LW, Hume DA, de Jersey J, Burke TR Jr, Hamilton S (2004) Phosphotyrosyl peptides and analogues as substrates and inhibitors of purple acid phosphatase. Arch Biochem Biophys 424:154–162

    Article  PubMed  CAS  Google Scholar 

  86. Bresciani R, Von Figura K (1996) Dephosphorylation of the mannose-6-phosphate recognition marker is localized in late compartments of the endocytic route. Identification of purple acid phosphatase (uteroferrin) as the candidate phosphatase. Eur J Biochem 238:669–674

    Article  PubMed  CAS  Google Scholar 

  87. Sun P, Sleat DE, Lecocq M, Hayman AR, Jadot M, Lobel P (2008) Acid phosphatase 5 is responsible for removing the mannose-6-phosphate recognition marker from lysosomal proteins. Proc Natl Acad Sci USA 105:16590–16595

    Article  PubMed  Google Scholar 

  88. Campbell HD, Dionysius DA, Keough DT, Wilson BE, deJersey J, Zerner B (1978) Iron-containing acid phosphatases: comparison of the enzymes from beef spleen and pig allantoic fluid. Biochem Biophys Res Commun 82:615–620

    Article  PubMed  CAS  Google Scholar 

  89. Sibille JC, Doi K, Aisen P (1987) Hydroxyl radical formation and iron binding proteins. J Biol Chem 262:59–62

    PubMed  CAS  Google Scholar 

  90. Halleen JM, Räisänen S, Salo JJ, Reddi SV, Roodman GD, Hentunen TA, Lehenkari PP, Kaija H, Vihko P, Väänänen HK (1999) Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase. J Biol Chem 274:22907–22910

    Article  PubMed  CAS  Google Scholar 

  91. Kaija H, Alatalo SL, Halleen JM, Lindqvist Y, Schneider G, Väänänan HK, Vihko P (2002) Phosphatase and oxygen radical-generating activities of mammalian purple acid phosphatase are functionally independent. Biochem Biophys Res Commun 292:128–132

    Article  PubMed  CAS  Google Scholar 

  92. Grimes R, Reddy SV, Leach RJ, Scarcez T, Roodman GD, Sakaguchi AY, Lalley PA, Windle JJ (1993) Assignment of the mouse tartrate-resistant acid phosphatase gene (Acp5) to chromosome 9. Genomics 15:421–422

    Article  PubMed  CAS  Google Scholar 

  93. Vallet JL, Fahrenkrug SC (2000) Structure of the gene for uteroferrin. DNA Cell Biol 19:689–696

    Article  PubMed  CAS  Google Scholar 

  94. Cassady AI, King AG, Cross NC, Hume DA (1993) Isolation and characterization of the genes encoding mouse and human type 5 acid phosphatase. Gene 130:201–207

    Article  PubMed  CAS  Google Scholar 

  95. Fleckenstein E, Drexler HG (1997) Tartrate-resistant acid phosphatase: gene structure and function. Leukemia 11:10–13

    Article  PubMed  CAS  Google Scholar 

  96. Walsh NC, Cahill M, Carninci P, Kawai J, Okazaki Y, Hayashizaki Y, Hume DA, Cassady AI (2003) Multiple tissue-specific promoters control expression of the murine tartrate-resistant acid phosphatase gene. Gene 307:111–123

    Article  PubMed  CAS  Google Scholar 

  97. Fliss AE, Michel FJ, Chen CL, Hofig A, Bazer FW, Chou JY, Simmen RCM (1991) Regulation of the uteroferrin gene promoter in endometrial cells: interactions among estrogen, progesterone, and prolactin. Endocrinology 129:697–704

    Article  PubMed  CAS  Google Scholar 

  98. Alcantara O, Reddy SV, Roodman GD, Boldt DH (1994) Transcriptional regulation of the tartrate-resistant acid phosphatase (TRAP) gene by iron. Biochem J 298:421–425

    PubMed  CAS  Google Scholar 

  99. Fleckenstein E, Dirks W, Dehmel U, Drexler HG (1996) Cloning and characterization of the human tartrate-resistant acid phosphatase (TRAP) gene. Leukemia 10:637–643

    PubMed  CAS  Google Scholar 

  100. Fleckenstein EC, Dirks WG, Drexler HG (2000) The human tartrate-resistant acid phosphatase (TRAP): involvement of the hemin responsive elements (HRE) in transcriptional regulation. Leuk Lymphoma 36:603–612

    Article  PubMed  CAS  Google Scholar 

  101. Reddy SV, Hundley JE, Windle JJ, Alcantara O, Linn R, Leach RJ, Boldt DH, Roodman GD (1995) Characterization of the mouse tartrate-resistant acid phosphatase (TRAP) gene promoter. J Bone Miner Res 10:601–606

    Article  PubMed  CAS  Google Scholar 

  102. Reddy SV, Alcantara O, Roodman GD, Boldt DH (1996) Inhibition of tartrate-resistant acid phosphatase gene expression by hemin and protoporphyrin IX. Identification of a hemin-responsive inhibitor of transcription. Blood 88:2288–2297

    PubMed  CAS  Google Scholar 

  103. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki SI, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  104. Luchin A, Purdom G, Murphy K, Clark MY, Angel N, Cassady AI, Hume DA, Ostrowski MC (2000) The microphthalmia transcription factor regulates expression of the tartrate-resistant acid phosphatase gene during terminal differentiation of osteoclasts. J Bone Miner Res 15:451–460

    Article  PubMed  CAS  Google Scholar 

  105. Matsumoto M, Hisatake K, Nogi Y, Tsujimoto M (2001) Regulation of receptor activator of NFκB ligand-induced tartrate-resistant acid phosphatase gene expression by PU.1-interacting protein/interferon regulatory factor-4. J Biol Chem 276:33086–33092

    Article  PubMed  CAS  Google Scholar 

  106. Partington GA, Fuller K, Chambers TJ, Pondel M (2004) Mitf-PU.1 interactions with the tartrate-resistant acid phosphatase gene promoter during osteoclast differentiation. Bone 34:237–245

    Article  PubMed  CAS  Google Scholar 

  107. Mansky KC, Sulzbacher S, Purdom G, Nelson L, Hume DA, Rehli M, Ostrowski MC (2002) The microphthalmia transcription factor and the related helix-loop-helix zipper factors TFE-3 and TFE-C collaborate to activate the tartrate-resistant acid phosphatase promoter. J Leukocyte Biol 71:304–310

    PubMed  CAS  Google Scholar 

  108. Hu R, Sharma SM, Bronisz A, Srinivasan R, Sankar U, Ostrowski MC (2007) Eos, MITF, and PU.1 recruit corepressors to osteoclast-specific genes in committed myeloid progenitors. Mol Cell Biol 27:4018–4027

    Article  PubMed  CAS  Google Scholar 

  109. Liu Y, Shi Z, Silveira A, Liu J, Sawadogo M, Yang H, Feng X (2003) Involvement of upstream stimulatory factors 1 and 2 in RANKL-induced transcription of tartrate-resistant acid phosphatase gene during osteoclast differentiation. J Biol Chem 278:20603–20611

    Article  PubMed  CAS  Google Scholar 

  110. Shi Z, Silveira A, Patel P, Feng X (2004) YY1 is involved in RANKL-induced transcription of the tartrate-resistant acid phosphatase gene in osteoclast differentiation. Gene 343:117–126

    Article  PubMed  CAS  Google Scholar 

  111. Pan W, Mathews W, Donohue JM, Ramnaraine ML, Lynch C, Selski DJ, Walsh N, Cassady AI, Clohisy DR (2005) Analysis of distinct tartrate-resistant acid phosphatase promoter regions in transgenic mice. J Biol Chem 280:4888–4893

    Article  PubMed  CAS  Google Scholar 

  112. Renegar RH, Bazer FW, Roberts RM (1982) Placental transport and distribution of uteroferrin in the fetal pig. Biol Reprod 27:1247–1260

    Article  PubMed  CAS  Google Scholar 

  113. Buhi WC, Ducsay CA, Bazer FW, Roberts RM (1982) Iron transfer between the purple phosphatase uteroferrin and transferrin and its possible role in iron metabolism of the fetal pig. J Biol Chem 257:1712–1723

    PubMed  CAS  Google Scholar 

  114. Doi K, Ananaitis BC, Aisen P (1986) Absence of iron transfer from uteroferrin to transferrin. J Biol Chem 261:14936–14938

    PubMed  CAS  Google Scholar 

  115. Nuttleman PR, Roberts RM (1990) Transfer of iron from uteroferrin (purple acid phosphatase) to transferrin related to acid phosphatase activity. J Biol Chem 265:12192–12199

    PubMed  CAS  Google Scholar 

  116. Ek-Rylander B, Flores M, Wendel M, Heinegård D, Andersson G (1994) Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. Modulation of osteoclast adhesion in vitro. J Biol Chem 269:14853–14856

    PubMed  CAS  Google Scholar 

  117. Ljusberg J, Dodds RA, Lark MW, Gowen M, Lazner F, Kola I, Ek-Rylander B, Andersson G (1999) Tartrate-resistant acid phosphatase is proteolytically cleaved in vivo by cathepsin K. J Bone Miner Res 14:S358

    Google Scholar 

  118. Andersson G, Ek-Rylander B, Hollberg K, Ljusberg-Sjölander J, Lång P, Norgård M, Wang Y, Zhang SJ (2003) TRAP as an osteopontin phosphatase. J Bone Miner Res 18:1912–1915

    Article  PubMed  CAS  Google Scholar 

  119. Razzouk S, Brunn JC, Qin C, Tye CE, Goldberg HA, Butler WT (2002) Osteopontin posttranslational modifications, possibly phosphorylation, are required for in vitro bone resorption but not osteoclast adhesion. Bone 30:40–47

    Article  PubMed  CAS  Google Scholar 

  120. Vääräniemi J, Halleen JM, Kaarlonen K, Ylipahkala H, Alatalo SL, Andersson G, Kaija H, Vihko P, Väänänen HK (2004) Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res 19:1432–1440

    Article  PubMed  CAS  Google Scholar 

  121. Halleen JM, Räisänen SR, Alatalo SL, Väänänen HK (2003) Potential function for the ROS-generating activity of TRAP. J Bone Miner Res 18:1908–1911

    Article  PubMed  CAS  Google Scholar 

  122. Hayman AR, Jones SJ, Boyde A, Foster D, Colledge WH, Carlton MB, Evans MJ, Cox TM (1996) Mice lacking tartrate-resistant acid phosphatase (Acp5) have disrupted endochondral ossification and mild osteoporosis. Development 122:3151–3162

    PubMed  CAS  Google Scholar 

  123. Angel NZ, Walsh N, Forwood MR, Ostrowski MC, Cassady AI, Hume DA (2000) Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. J Bone Miner Res 15:103–110

    Article  PubMed  CAS  Google Scholar 

  124. Hayman AR (2008) Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity 41:218–223

    Article  PubMed  CAS  Google Scholar 

  125. Bune AJ, Hayman AR, Evans MJ, Cox TM (2001) Mice lacking tartrate-resistant acid phosphatase (Acp5) have disordered macrophage inflammatory responses and reduced clearance of the pathogen, Staphylococcus aureus. Immunology 102:103–113

    Article  PubMed  CAS  Google Scholar 

  126. Esfandiari E, Bailey M, Stokes CR, Cox TM, Evans MJ, Hayman AR (2006) TRAP influences Th1 pathways by affecting dendritic cell function. J Bone Miner Res 21:1367–1376

    Article  PubMed  CAS  Google Scholar 

  127. Räisänen SR, Alatalo SL, Ylipahkala H, Halleen JM, Cassady AI, Hume DA, Väänänen HK (2005) Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing. Biochem Biophys Res Commun 331:120–126

    Article  PubMed  CAS  Google Scholar 

  128. Suter A, Everts V, Boyde A, Jones SJ, Lüllmann-Rauch R, Hartmann D, Hayman AR, Cox TM, Evans MJ, Meister T, von Figura K, Saftig P (2001) Overlapping functions of lysosomal acid phosphatase (LAP) and tartrate-resistant acid phosphatase (Acp5) revealed by doubly deficient mice. Development 128:4899–4910

    PubMed  CAS  Google Scholar 

  129. Sheu TJ, Schwarz EM, O’Keefe RJ, Rosier RN, Puzas JE (2002) Use of a phage display technique to identify potential osteoblast binding sites within osteoclast lacunae. J Bone Miner Res 17:915–922

    Article  PubMed  Google Scholar 

  130. Mitić N, Valizadeh M, Leung EW, de Jersey J, Hamilton S, Hume DA, Cassady AI, Schenk G (2005) Human tartrate-resistant acid phosphatase becomes an effective ATPase upon proteolytic activation. Arch Biochem Biophys 439:154–164

    Article  PubMed  CAS  Google Scholar 

  131. Lam KW, Siemens Sun T, Li CY, Yam LT (1982) Enzyme immunoassay for tartrate-resistant acid phosphatase. Clin Chem 28:467–470

    PubMed  CAS  Google Scholar 

  132. Echetebu ZO, Cox TM, Moss DW (1987) Antibodies to porcine uteroferrin used in measurement of human tartrate-resistant acid phosphatase. Clin Chem 33:1832–1836

    PubMed  CAS  Google Scholar 

  133. Kraenzlin ME, Lau KHW, Liang L, Freeman TK, Singer FR, Stepan J, Baylink DJ (1990) Development of an immunoassay for human serum osteoclastic tartrate-resistant acid phosphatase. J Clin Endocrinol Metab 71:442–451

    Article  PubMed  CAS  Google Scholar 

  134. Cheung CK, Panesar NS, Haines C, Masarei J, Swaminathan R (1995) Immunoassay of a tartrate-resistant acid phosphatase in serum. Clin Chem 41:679–686

    PubMed  CAS  Google Scholar 

  135. Chamberlain P, Compston J, Cos TM, Hayman AR, Imrie RC, Reynolds K, Holmes SD (1995) Generation and characterization of monoclonal antibodies to human type 5 tartrate-resistant acid phosphatase: development of a specific immunoassay of the isoenzymes in serum. Clin Chem 41:1495–1499

    PubMed  CAS  Google Scholar 

  136. Halleen JM, Hentunen TA, Karp M, Käkönen SM, Pettersson K, Väänänen HK (1998) Characterization of serum tartrate-resistant acid phosphatase and development of a direct two-site immunoassay. J Bone Miner Res 15:683–687

    Article  Google Scholar 

  137. Nakasato YR, Janckila AJ, Halleen JM, Väänänen HK, Walton SP, Yam LT (1999) Clinical significance of immunoassays for type 5 tartrate-resistant acid phosphatase. Clin Chem 45:2150–2157

    PubMed  CAS  Google Scholar 

  138. Miyazaki T, Matsunaga T, Miyazaki S, Hokari S, Komoda T (2002) Characterization of four monoclonal antibodies to recombinant human tartrate-resistant acid phosphatase. Hybridoma Hybridomics 21:191–195

    Article  CAS  Google Scholar 

  139. Miyazaki S, Igarishi M, Nagata A, Tominaga Y, Onodera K, Komoda T (2003) Development of immunoassays for type 5 tartrate-resistant acid phosphatase in human serum. Clin Chim Acta 329:109–115

    Article  PubMed  CAS  Google Scholar 

  140. Halleen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Väänänen HK (2000) Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 15:1337–1345

    Article  PubMed  CAS  Google Scholar 

  141. Janckila AJ, Takahashi K, Sun SZ, Yam LT (2001) Tartrate-resistant acid phosphatase isoform 5b as serum marker for osteoclastic activity. Clin Chem 47:74–80

    PubMed  CAS  Google Scholar 

  142. Halleen JM, Ylipahkala H, Alatalo SL, Janckila AJ, Heikkinen JE, Suominen H, Cheng S, Väänänen HK (2002) Serum tartrate-resistant acid phosphatase 5b, but not 5a, correlates with other markers of bone turnover and bone mineral density. Calcif Tissue Int 71:20–25

    Article  PubMed  CAS  Google Scholar 

  143. Ohashi T, Igarashi Y, Mochizuki Y, Miura T, Inaba N, Katayama K, Tomonaga T, Nomura F (2007) Development of a novel fragments absorbed immunocapture enzyme assay system for tartrate-resistant acid phosphatase 5b. Clin Chim Acta 376:205–212

    Article  PubMed  CAS  Google Scholar 

  144. Ylipahkala H, Fagerlund KM, Janckila A, Houston B, Laurie D, Halleen JM (2009) Specificity and clinical performance of two commercial TRAP 5b assays. J Clin Lab 55(5–6):223–228

    CAS  Google Scholar 

  145. Nakanishi M, Yoh K, Miura T, Ohashi T, Rai SK, Uchida K (2000) Development of a kinetic assay for band 5b tartrate-resistant acid phosphatase activity in serum. Clin Chem 46:469–473

    PubMed  CAS  Google Scholar 

  146. Janckila AJ, Simons RM, Yam LT (2004) Alternative immunoassay for tartrate-resistant acid phosphatase isoform 5b using the fluorogenic substrate naphthol ASBI-phosphate and heparin. Clin Chim Acta 347:157–167

    Article  PubMed  CAS  Google Scholar 

  147. Fagerlund KM, Janckila AJ, Ylipahkala H, Tiitinen SL, Nenonen A, Cheng S, Uusi-Rasi K, Yam LT, Väänänen HK, Halleen JM (2008) Clinical performance of six different serum tartrate-resistant acid phosphatase assays for monitoring alendronate treatment. Clin Lab 54:347–354

    PubMed  CAS  Google Scholar 

  148. Alatalo SL, Ivaska KK, Wagnespack SG, Econs MJ, Väänänen HK, Halleen JM (2004) Osteoclast-derived tartrate-resistant acid phosphatase 5b in Albers-Schoenberg disease (type II autosomal-dominant osteopetrosis). Clin Chem 50:883–890

    Article  PubMed  CAS  Google Scholar 

  149. Alatalo SL, Peng Z, Janckila AJ, Kaija H, Vihko P, Väänänen HK, Halleen JM (2003) A novel immunoassay for the determination of tartrate-resistant acid phosphatase 5b from rat serum. J Bone Miner Res 18:134–139

    Article  PubMed  CAS  Google Scholar 

  150. Rissanen JP, Suominen MI, Peng Z, Halleen JM (2008) Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int 82:108–115

    Article  PubMed  CAS  Google Scholar 

  151. Alatalo SL, Halleen JM, Hentunen TA, Mönkkönen J, Väänänen HK (2000) Rapid screening method for osteoclast differentiation in vitro that measures tartrate-resistant acid phosphatase 5b activity secreted into culture medium. Clin Chem 46:1751–1754

    PubMed  CAS  Google Scholar 

  152. Chen CJ, Chao TY, Chu DM, Janckila AJ, Cheng SN (2004) Osteoblast and osteoclast activity in a malignant infantile osteopetrosis patient following bone marrow transplantation. J Pediatr Hematol Oncol 26:5–8

    Article  PubMed  Google Scholar 

  153. Chu P, Chao TY, Lin YF, Janckila AJ, Yam LT (2003) Correlation between histomorphometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am J Kidney Dis 41:1052–1059

    Article  PubMed  CAS  Google Scholar 

  154. Capparelli C, Morony S, Warmington K, Adamu S, Lacey D, Dunstan CR, Stouch B, Martin S, Kostenuik PJ (2003) Sustained antiresorptive effects after a single treatment with human recombinant osteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J Bone Miner Res 18:852–858

    Article  PubMed  CAS  Google Scholar 

  155. Rissanen JP, Ylipahkala H, Fagerlund KM, Long C, Vaananen HK, Halleen JM (2009) Improved methods for testing antiresorptive compounds in human osteoclast cultures. J Bone Miner Metab 27:105–109

    Article  PubMed  CAS  Google Scholar 

  156. Greenspan SL, Parker RA, Ferguson L, Rosen HN, Maitland-Ramsey L, Karpf DB (1998) Early changes in biochemical markers of bone turnover predict the long-term response to alendronate therapy in representative elderly women: a randomized clinical trial. J Bone Miner Res 13:1431–1438

    Article  PubMed  CAS  Google Scholar 

  157. Woitge HW, Seibel MJ (2000) Risk assessment for osteoporosis II. Biochemical markers of bone turnover: bone resorption indices. Clin Lab Med 20:503–525

    PubMed  CAS  Google Scholar 

  158. Demers LM, Costa L, Lipton A (2000) Biochemical markers and skeletal metastasis. Cancer 88:2919–2926

    Article  PubMed  CAS  Google Scholar 

  159. Fohr B, Dunstan CR, Seibel MJ (2003) Markers of bone remodeling in metastatic bone disease. J Clin Endocrinol Metab 88:5059–5075

    Article  PubMed  CAS  Google Scholar 

  160. Hannon R, Blumsohn A, Naylor K, Eastell R (1998) Response of biochemical markers of bone turnover to hormone replacement therapy: impact of biological variability. J Bone Miner Res 13:1124–1133

    Article  PubMed  CAS  Google Scholar 

  161. Hannon RA, Clowes JA, Eagleton AC, Hadari AA, Eastell R, Blumsohn A (2004) Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone 34:197–204

    Article  CAS  Google Scholar 

  162. Nenonen A, Cheng S, Ivaska KK, Alatalo SL, Lehtimäki T, Schmidt-Gayk H, Uusi-Rasi K, Heionen A, Kannus P, Sievänen H, Vuori I, Väänänen HK, Halleen JM (2005) Serum TRAP 5b is a useful marker for monitoring alendronate treatment: comparison with other markers of bone turnover. J Bone Miner Res 20:1804–1812

    Article  CAS  Google Scholar 

  163. Gerdhem P, Ivaska KK, Alatalo SL, Halleen JM, Hellman J, Isaksson A, Pettersson K, Väänänen HK, Åkesson K, Obrant KJ (2004) Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 19:386–393

    Article  PubMed  CAS  Google Scholar 

  164. Lipton A, Costa L, Ali S, Demers L (2001) Use of markers of bone turnover for monitoring bone metastasis and the response to therapy. Semin Oncol 28(Suppl II):54–59

    Article  PubMed  CAS  Google Scholar 

  165. Saad F (2006) Optimizing patient therapy: the role of bone markers? Cancer Treat Rev 32(Suppl 1):3–6

    Article  PubMed  Google Scholar 

  166. Coleman R, Brown J, Terpos E, Lipton A, Smith MR, Cook R, Major P (2008) Bone markers and their prognostic value in metastatic bone disease: clinical evidence and future directions. Cancer Treat Rev 34:629–639

    Article  PubMed  CAS  Google Scholar 

  167. Wada N, Fujisaka M, Ishii S, Ikeda T, Kitajima M (2001) Evaluation of bone metabolic markers in breast cancer with bone metastasis. Breast Cancer 8:131–137

    Article  PubMed  CAS  Google Scholar 

  168. Capeller B, Caffier H, Sutterlin MW, Dietl J (2003) Evaluation of tartrate-resistant acid phosphatase (TRAP) 5b as serum marker of bone metastasis in human breast cancer. Anticancer Res 23:1011–1016

    PubMed  CAS  Google Scholar 

  169. Chao TY, Yu JC, Ku CH, Chen MM, Lee SH, Janckila AJ, Yam LT (2005) Tartrate-resistant acid phosphatase 5b is a useful marker for extensive bone metastasis in breast cancer patients. Clin Cancer Res 15:544–550

    Google Scholar 

  170. Lipton A (2006) Biochemical bone markers in breast cancer. Cancer Treat Rev 32(Suppl 1):20–22

    Article  PubMed  CAS  Google Scholar 

  171. Koizumi M, Takahashi S, Ogata E (2003) Comparison of serum bone resorption markers in the diagnosis of skeletal metastasis. Anticancer Res 23:4095–4099

    PubMed  CAS  Google Scholar 

  172. Korpela J, Tiitinen SL, Hiekkanen H, Halleen JM, Selander KS, Väänänen HK, Suominen P, Helenius H, Salminen E (2006) Serum TRAP 5b and ICTP as markers of bone metastasis in breast cancer. Anticancer Res 26:3127–3132

    PubMed  CAS  Google Scholar 

  173. Voorzanger-Rousselot N, Juillet F, Mareau E, Zimmermann J, Kalabic T, Garnero P (2006) Association of 12 serum biochemical markers of angiogenesis, tumor invasion and bone turnover with bone metastasis from breast cancer: a cross-sectional and longitudinal evaluation. Br J Cancer 95:506–514

    Article  PubMed  CAS  Google Scholar 

  174. Terpos E, de la Fuente J, Szydlo R, Hatjiharissi E, Viniou N, Meletis J, Yataganas X, Goldman JM, Rahemtulla A (2003) Tartrate-resistant acid phosphatase isoform 5b: a novel serum marker for monitoring bone disease in multiple myeloma. Int J Cancer 106:455–457

    Article  PubMed  CAS  Google Scholar 

  175. Terpos E (2006) Biochemical markers of bone metabolism in multiple myeloma. Cancer Treat Rev 32(Suppl 1):15–19

    Article  PubMed  CAS  Google Scholar 

  176. Lyubimova NV, Pashkov MV, Tyulyandin SA, Gol’dberg VE, Kushlinskii NE (2004) Tartrate-resistant acid phosphatase as a marker of bone metastasis in patients with breast cancer and prostate cancer. Bull Exp Biol Med 138:77–79

    PubMed  CAS  Google Scholar 

  177. Jung K, Lein M, Stephan C, Von Hösslin K, Semjonow A, Sinha P, Loening SA, Schnorr D (2004) Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int J Cancer 111:783–791

    Article  PubMed  CAS  Google Scholar 

  178. Salminen E, Ala-Houhala M, Korppela J, Varpula M, Tiitenen SL, Halleen JM, Väänänen HK (2005) Serum tartrate-resistant acid phosphatase 5b (TRAP 5b) as a marker of skeletal changes in prostate cancer. Acta Oncol 44:742–747

    Article  PubMed  CAS  Google Scholar 

  179. Hegele A, Wahl HG, Varga Z, Sevinc S, Koliva L, Schrader AJ, Hofmann R, Olbert P (2007) Biochemical markers of bone turnover in patients with localized and metastasized prostate cancer. BJU Int 99:330–334

    Article  PubMed  CAS  Google Scholar 

  180. Ozu C, Nakashima J, Horiguchi Y, Oya M, Ohigashi T, Murai M (2008) Prediction of bone metastasis by combination of tartrate-resistant acid phosphatase, alkaline phosphatase and prostate specific antigen in patients with prostate cancer. Int J Urol 15:419–422

    Article  PubMed  CAS  Google Scholar 

  181. Salminen EK, Kallioinen MJ, Ala-Houhala MA, Vihinen PP, Tiitinen SL, Varpula M, Vahlberg TJ (2006) Survival markers related to bone metastasis in prostate cancer. Anticancer Res 26:4879–4884

    PubMed  CAS  Google Scholar 

  182. Leeming DJ, Koizumi M, Byrjalsen I, Li B, Qvist P, Tanko LB (2006) The relative use of eight collagenous and noncollagenous markers for diagnosis of skeletal metastasis in breast, prostate, or lung cancer patients. Cancer Epidemiol Biomarkers Prev 15:32–38

    Article  PubMed  CAS  Google Scholar 

  183. Ebert W, Muley TH, Herb KP, Schmidt-Gayk H (2004) Comparison of bone scintigraphy with bone markers in the diagnosis of bone metastasis in lung carcinoma patients. Anticancer Res 24:3193–3202

    PubMed  CAS  Google Scholar 

  184. Avnet S, Longhi A, Salerno M, Halleen JM, Perut F, Granchi D, Ferrari S, Bertoni F, Giunti A, Baldini N (2008) Increased osteoclast activity is associated with aggressiveness of osteosarcoma. Int J Oncol 33:1231–1238

    PubMed  CAS  Google Scholar 

  185. Martinetti A, Seregni E, Ripamonti C, Ferrari L, De Conno F, Miceli R, Pallotti F, Coliva A, Biancolini D, Bombardieri E (2002) Serum levels of tartrate-resistant acid phosphatase-5b in breast cancer patients treated with pamidronate. Int J Biol Markers 17:253–258

    PubMed  CAS  Google Scholar 

  186. Tsai SH, Chen CY, Ku CH, Janckila AJ, Yam LT, Yu JC, Chuang KW, Chao TY (2007) The semiquantitative bone scintigraphy index correlates with serum tartrate-resistant acid phosphatase activity in breast cancer patients with bone metastasis. Mayo Clin Proc 82:917–926

    Article  PubMed  CAS  Google Scholar 

  187. Terpos E, Viniou N, de la Fuente J, Meletis J, Voskaridou E, Karkantaris C, Vaipou los G, Palermos J, Yataganas X, Goldman JM, Rahemtulla A (2003) Pamidronate is superior to ibandronate in decreasing bone resorption, interleukin-6 and β2-microglobulin in multiple myeloma. Eur J Haematol 70:34–42

    Article  PubMed  CAS  Google Scholar 

  188. Takahashi K, Janckila AJ, Sun SZ, Lederer ED, Ray PC, Yam LT (2000) Electrophoretic study of tartrate-resistant acid phosphatase in endstage renal disease and rheumatoid arthritis. Clin Chim Acta 301:147–158

    Article  PubMed  CAS  Google Scholar 

  189. Yamada S, Inaba M, Kurajoh M, Shidara K, Imanishi Y, Ishimura E, Nishizawa Y (2008) Utility of serum tartrate-resistant acid phosphatase (TRAP5b) as a bone resorption marker in patients with chronic kidney disease: independence from renal dysfunction. Clin Endocrinol 69:189–196

    Article  CAS  Google Scholar 

  190. Avbersek-Luznik I, Balon BP, Rus I, Marc J (2005) Increased bone resorption in HD patients: is it caused by elevated RANKL synthesis? Nephrol Dial Transplant 20:566–570

    Article  PubMed  CAS  Google Scholar 

  191. Małyszko J, Małyszko JS, Pawlak K, Wołczyński S, Myśliwiec M (2006) Tartrate-resistant acid phosphatase 5b and its correlations with other markers of bone metabolism in kidney transplant recipients and dialyzed patients. Adv Med Sci 51:69–72

    PubMed  Google Scholar 

  192. Shidara K, Inaba M, Okuno S, Yamada S, Kumeda Y, Imanishi Y, Yamakawa T, Ishimura E, Nishizawa Y (2008) Serum levels of TRAP 5b, a new bone resorption marker unaffected by renal dysfunction, as a useful marker of cortical bone loss in hemodialysis patients. Calcif Tissue Int 82:278–287

    Article  PubMed  CAS  Google Scholar 

  193. Peters BS, Moyses RM, Jorgetti V, Martini LA (2007) Effects of parathyroidectomy on bone remodeling markers and vitamin D status in patients with chronic kidney disease-mineral and bone disorder. Int Urol Nephrol 39:1251–1256

    Article  PubMed  CAS  Google Scholar 

  194. Fahrleitner-Pammer A, Herberth J, Browning SR, Obermayer-Pietsch B, Wirnsberger G, Holzer H, Dobnig H, Malluche HH (2008) Bone markers predict cardiovascular events in chronic kidney disease. J Bone Miner Res 23:1850–1858

    Article  PubMed  CAS  Google Scholar 

  195. Garnero P, Delmas PD (2004) Noninvasive techniques for assessing skeletal changes in inflammatory arthritis: bone biomarkers. Curr Opin Rheumatol 16:428–434

    Article  PubMed  Google Scholar 

  196. Gravallese EM, Harada Y, Wang JT, Gorn AH, Thornhill TS, Goldring SR (1998) Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 152:943–951

    PubMed  CAS  Google Scholar 

  197. Itonaga I, Fujikawa Y, Sabokbar A, Murray DW, Athanasou NA (2000) Rheumatoid arthritis synovial macrophage-osteoclast differentiation is osteoprotegerin ligand-dependent. J Pathol 192:97–104

    Article  PubMed  CAS  Google Scholar 

  198. Janckila AJ, Neustadt DH, Nakasato YR, Halleen JM, Hentunen T, Yam LT (2002) Serum tartrate-resistant acid phosphatase isoforms in rheumatoid arthritis. Clin Chim Acta 320:49–58

    Article  PubMed  CAS  Google Scholar 

  199. Chao TY, Lee SH, Chen MM, Neustadt DH, Chaudhry UA, Yam LT, Janckila AJ (2005) Development of immunoassays for serum tartrate-resistant acid phosphatase isoform 5a. Clin Chim Acta 359:132–140

    Article  PubMed  CAS  Google Scholar 

  200. Toussirot É, Dumoulin G, Saas P, Nguyen NU, Le Huédé G, Wendling D (2008) Increased tartrate-resistant acid phosphatase serum levels in ankylosing spondylitis and relationship with the inflammatory process. Ann Rheum Dis 67:430–431

    Article  PubMed  CAS  Google Scholar 

  201. Janckila AJ, Neustadt DH, Yam LT (2008) Significance of serum TRAP in rheumatoid arthritis. J Bone Miner Res 23:1287–1295

    Article  PubMed  CAS  Google Scholar 

  202. Yaziji H, Janckila AJ, Lear SC, Martin AW, Yam LT (1995) Immunohistochemical detection of tartrate-resistant acid phosphatase in non-hematopoietic human tissues. Am J Clin Pathol 104:397–402

    PubMed  CAS  Google Scholar 

  203. Janckila AJ, Slone SP, Lear SC, Martin A, Yam LT (2007) Tartrate-resistant acid phosphatase as an immunohistochemical marker for inflammatory macrophages. Am J Clin Pathol 127:556–566

    Article  PubMed  CAS  Google Scholar 

  204. Hayman AR, Bune AJ, Cox TM (2000) Widespread expression of tartrate-resistant acid phosphatase (Acp5) in the mouse embryo. J Anat 196:433–441

    Article  PubMed  CAS  Google Scholar 

  205. Hayman AR, Bune AJ, Bradley JR, Rashbass J, Cox TM (2000) Osteoclastic tartrate-resistant acid phosphatase (Acp5): its localization to dendritic cells and diverse murine tissues. J Histochem Cytochem 48:219–227

    PubMed  CAS  Google Scholar 

  206. Lång P, Schultzberg M, Andersson G (2001) Expression and distribution of tartrate-resistant purple acid phosphatase in the rat nervous system. J Histochem Cytochem 49:379–396

    PubMed  Google Scholar 

  207. Lång P, Andersson G (2005) Differential expression of monomeric and proteolytically processed forms of purple/tartrate-resistant acid phosphatase in rat tissues. Cell Mol Life Sci 62:905–918

    Article  PubMed  CAS  Google Scholar 

  208. Janckila AJ, Lederer ED, Price BA, Yam LT (2009) Tartrate-resistant acid phosphatase isoform 5a as an inflammation marker in end-stage renal disease. Clin Nephrol 71:387–396

    PubMed  CAS  Google Scholar 

  209. Lång P, van Harmelen V, Ryden M, Kaaman M, Parini P, Carneheim C, Cassady AI, Hume DA, Andersson G, Arner P (2008) Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity. PloS ONE 5(3):e1713

    Article  CAS  Google Scholar 

  210. Tilg H, Moschen AR (2008) Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 14:222–231

    Article  PubMed  CAS  Google Scholar 

  211. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  212. Shih KC, Janckila AJ, Kwok CF, Ho LT, Chou YC, Chao TY (2009) Effects of exercise on insulin sensitivity, inflammatory cytokines and serum tartrate-resistant acid phosphatase 5a in obese Chinese male adolescents. Metabolism (in press)

Download references

Acknowledgments

The authors fondly acknowledge the long friendship and collaborations of Dr. Chin-Yang Li and Dr. Kwok-Wai “Bill” Lam since the initiation of our studies on TRAP. Early success was possible only through their hard work and dedication. The dedication and support of our wives, Barbara and Julia, have been equally important during long hours in the lab. The valuable contributions made in the lab and clinic over the years by colleagues, fellows, residents, students, and associates at the University of Louisville, School of Medicine, are also heartily acknowledged. We also thank Dr. Jussi Halleen and his colleagues and students from the Anatomy Department, University of Turku, who so generously shared their talents, ideas, and data about TRAP and bone metabolism. Dr. Tsu-Yi Chao and members of his Hematology/Oncology Division at the TriService General Hospital in Taipei deserve our many thanks for their tireless efforts to promote clinical research on the application of TRAP in cancer and other diseases. The authors are supported by grants from the Research Service of the U.S. Department of Veterans Affairs and by funds from the Clinical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Janckila.

Additional information

The authors have stated that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janckila, A.J., Yam, L.T. Biology and Clinical Significance of Tartrate-Resistant Acid Phosphatases: New Perspectives on an Old Enzyme. Calcif Tissue Int 85, 465–483 (2009). https://doi.org/10.1007/s00223-009-9309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9309-8

Keywords

Navigation