Abstract
Type 5 tartrate-resistant acid phosphatase (TRAP) has been a clinically relevant biomarker for about 50 years. It has always been a reliable and specific cytochemical marker for hairy cell leukemia and for differentiated cells of monocytic lineage. Only recently has the test for serum TRAP activity been accepted as sensitive and specific enough for clinical use as a marker of osteoclasts and bone resorption. This has come about through steady advances in knowledge about TRAP enzymology, structure, function, and molecular regulation and a consequent appreciation that TRAP isoforms 5a and 5b have very different clinical significance. As a measure of osteoclast number and bone resorption, TRAP 5b has diagnostic and prognostic applications in osteoporosis, cancers with bone metastasis, chronic renal failure, and perhaps other metabolic and pathologic bone diseases. Serum TRAP 5a, on the other hand, has no relationship to bone metabolism but seems instead to be a measure of activated macrophages and chronic inflammation. Exploration of the real clinical usefulness of serum TRAP 5a for diagnosis and disease management in a wide variety of chronic inflammatory diseases is only now beginning. This perspective traces the important basic scientific developments that have led up to the refinement of serum TRAP isoform immunoassays and their validation as biomarkers of disease. Many unanswered questions remain, providing a wealth of opportunity for continued research of this multifaceted enzyme.
Similar content being viewed by others
References
Yam LT (1974) Clinical significance of the human acid phosphatases. Am J Med 56:604–616
Antanaitis BC, Aisen P (1983) Uteroferrin and the purple acid phosphatases. Adv Inorg Biochem 5:111–136
Drexler HG, Gignac SM (1994) Characterization and expression of tartrate-resistant acid phosphatase (TRAP) in hemopoietic cells. Leukemia 8:359–368
Lamp EC, Drexler HG (2000) Biology of tartrate-resistant acid phosphatase. Leuk Lymphoma 39:477–484
Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA (2000) Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone 27:575–584
Mose S, Menzel C, Kurth AA, Obert K, Ramm U, Eberlein K, Boettcher HD, Pichlmeier U (2005) Evaluation of tartrate-resistant acid phosphatase (TRAP) 5b as bone resorption marker in irradiated bone metastasis. Anticancer Res 25:4639–4646
Halleen JM, Tiitinen SL, Ylipahkala H, Fagerlund KM, Vaananen HK (2006) Tartrate-resistant acid phosphatase 5b (TRAP 5b) as a marker of bone resorption. Clin Lab 52:499–509
Gutman AB, Gutman EB (1938) An “acid” phosphatase occurring in the serum of patients with metastasizing carcinoma of the prostate gland. J Clin Invest 17:473–478
Gutman AB (1968) The development of the acid phosphatase test for prostatic carcinoma. Bull N Y Acad Med 44:63–76
Burstone MS (1959) Chemical demonstration of acid phosphatase activity in osteoclasts. J Histochem Cytochem 7:39–41
Wergedal JE (1970) Characterization of bone acid phosphatase activity. Proc Soc Exp Biol Med 134:224–227
Hanker JS, Hammarstrom LE, Toverud SU (1971) Functional distribution of acid phosphatase in developing bones and teeth. J Dent Res 50:1502–1503
Lieberherr M, Vreven J, Vaes G (1973) The acid and alkaline phosphatases, inorganic pyrophosphatases and phosphoprotein phosphatase of bone. I. Characterization and assay. Biochim Biophys Acta 293:160–169
Li CY, Yam LT, Lam KW (1970) Acid phosphatase isoenzyme in human leukocytes in normal and pathological conditions. J Histochem Cytochem 18:473–481
Li CY, Yam LT, Lam KW (1970) Studies of acid phosphatase isoenzymes in human leukocytes: demonstration of isoenzyme cell specificity. J Histochem Cytochem 18:901–910
Taira A, Merrick G, Wallner K, Dattoli M (2007) Reviving the acid phosphatase test for prostate cancer. Oncology 21:1003–1010
Yam LT, Li CY, Lam KW (1971) Tartrate-resistant acid phosphatase isoenzymes in the reticulum cells of leukemic reticuloendotheliosis. N Engl J Med 284:367–369
Lam KW, Lee P, Li CY, Yam LT (1980) Immunological and biochemical evidence for identity of tartrate-resistant isoenzymes of acid phosphatases from human serum and tissues. Clin Chem 26:420–422
Minkin C (1982) Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 34:285–290
Štĕpán JJ, Silinková-Málková E, Havránek T, Formánková J, Zichová M, Lachmanová J, Straková M, Broulik P, Pacovsky V (1983) Relationship of plasma tartrate-resistant acid phosphatase to the bone isoenzyme of serum alkaline phosphatase in hyperparathyroidism. Clin Chim Acta 30:189–200
Lau KH, Onishi T, Werdegal JE, Singer FR, Baylink DJ (1987) Characterization and assay of tartrate-resistant acid phosphatase activity in serum: potential use to assess bone resorption. Clin Chem 33:458–462
Štĕpán J, Lachmanová J, Straková M, Pacovsky V (1987) Serum osteocalcin, bone alkaline phosphatase isoenzyme and plasma tartrate-resistant acid phosphatase in patients on chronic maintenance hemodialysis. Bone Miner 3:177–183
Štĕpán JJ, Pospíchal J, Schreiber V, Kanka J, Mensik J, Presl J, Pacovsky V (1989) The application of plasma tartrate-resistant acid phosphatase to assess changes in bone response to artificial menopause and its treatment with estrogen or norethisterone. Calcif Tissue Int 45:273–280
Torres R, de la Piedra C, Rapado A (1991) Clinical usefulness of serum tartrate-resistant acid phosphatase in Paget’s disease of bone: correlation with other biochemical markers of bone remodeling. Calcif Tissue Int 49:14–16
Scarneccia L, Minisola S, Pacitti MT, Carnevale V, Romagnoli E, Rosso R, Mazzuoli GF (1991) Clinical usefulness of serum tartrate-resistant acid phosphatase activity determination to evaluate bone turnover. Scand J Clin Lab Invest 51:517–524
Tavassoli M, Rizo M, Yam LT (1980) Elevation of serum acid phosphatase in cancers with bone metastasis. Cancer 45:2400–2403
Lam KW, Dannaher C, Letchford S, Eastlund T, Li CY, Yam LT (1984) Tartrate-resistant acid phosphatase in serum of cancer patients. Clin Chem 30:457–459
Monti M, Scazzoso A, Calzaferri G, Santi I, D’Aprile E, Cunietti E (1990) Tartrate-resistant acid phosphatase (TRAP) activity in serum: potential use in assessing bone resorption in patients with multiple myeloma. Int J Biol Markers 5:61–64
Desoize B, Amico S, Larbre H, Coninx P, Jardillier JC (1991) Phosphatase isoenzymes as bone metastasis markers in prostatic carcinoma. Clin Biochem 24:443–446
Lam KW, Eastlund T, Lin CY, Yam LT (1978) Biochemical properties of the tartrate-resistant acid phosphatase in serum of adults and children. Clin Chem 24:1106–1108
Chen J, Yam LT, Janckila AJ, Li CY, Lam KW (1979) Significance of “high” acid phosphatase activity in the serum of normal children. Clin Chem 25:719–722
Štĕpán JJ, Tesařová A, Havránek T, Jodl J, Formánková J, Pacovsky V (1985) Age and sex dependency of the biochemical indices of bone remodeling. Clin Chim Acta 151:273–283
Li CY, Yam LT, Crosby WH (1972) Histochemical characterization of cellular and structural elements of the human spleen. J Histochem Cytochem 20:1049–1058
Radzun HJ, Kreipe H, Parwaresch MR (1983) Tartrate-resistant acid phosphatase as a differentiation marker for the human mononuclear phagocyte system. Hematol Oncol 1:321–327
Snipes RG, Lam KW, Dodd RC, Gray TK, Cohen MS (1986) Acid phosphatase activity in mononuclear phagocytes and the U937 cell line: monocyte-derived macrophages express tartrate-resistant acid phosphatase. Blood 67:729–734
Moss DW (1992) Changes in enzyme expression related to differentiation and regulatory factors: the acid phosphatase of osteoclasts and other macrophages. Clin Chim Acta 209:131–138
Lam KW, Li CY, Yam LT, Desnick RJ (1981) Comparison of the tartrate-resistant acid phosphatase in Gaucher’s disease and leukemic reticuloendotheliosis. Clin Biochem 14:177–181
Halleen J, Hentunen TA, Hellman J, Väänänen HK (1996) Tartrate-resistant acid phosphatase from human bone: purification and development of an immunoassay. J Bone Miner Res 11:1444–1452
Janckila AJ, Takahashi K, Sun SZ, Yam LT (2001) Tartrate-resistant acid phosphatase isoform 5b as a serum marker for osteoclastic activity. Clin Chem 47:74–80
Anderson TR, Toverud SU (1986) Purification and characterization of purple acid phosphatase from developing rat bone. Arch Biochem Biophys 247:131–139
Hayman AR, Warburton MJ, Pringle JAS, Coles B, Chambers TJ (1989) Purification and characterization of a tartrate-resistant acid phosphatase from human osteoclastomas. Biochem J 261:601–609
Lam KW, Yam LT (1977) Biochemical characterization of the tartrate-resistant acid phosphatase of human spleen with leukemic reticuloendotheliosis as a pyrophosphatase. Clin Chem 23:89–94
Davis JC, Lin SL, Averill BA (1981) Kinetics and optical spectroscopic studies on the purple acid phosphatase from beef spleen. Biochemistry 20:4062–4067
Hara A, Sawada H, Kato T, Nakayama T, Yamamoto H, Matsumoto Y (1984) Purification and characterization of a purple acid phosphatase from rat spleen. J Biochem 95:67–74
Ketcham CM, Baumbach GA, Bazer FW, Roberts RM (1985) The type 5, acid phosphatase from spleen of humans with hairy cell leukemia. Purification, properties, immunological characterization, and comparison with porcine uteroferrin. J Biol Chem 260:5768–5776
Štĕpán JJ, Lau KHW, Kraenzlin M, Baylink DJ (1989) Purification and N-terminal sequence of two tartrate-resistant acid phosphatases type 5 from the hairy cell leukemia spleen. Biochem Biophys Res Commun 165:1027–1034
Janckila AJ, Latham MD, Lam KW, Chow KC, Li CY, Yam LT (1992) Heterogeneity of hairy cell tartrate-resistant acid phosphatase. Clin Biochem 25:437–443
Orlando JL, Zirino T, Quirk BJ, Averill BA (1993) Purification and properties of the native form of the purple acid phosphatase from bovine spleen. Biochemistry 32:8120–8129
Ek-Rylander B, Barkhem T, Ljusberg J, Öhman L, Andersson KK, Andersson G (1997) Comparative studies of rat recombinant purple acid phosphatase and bone tartrate-resistant acid phosphatase. Biochem J 321:305–311
Schlosnagle DC, Bazer FW, Tsibris JCM, Roberts RM (1974) An iron-containing phosphatase induced by progesterone in the uterine fluids of pigs. J Biol Chem 249:7574–7579
Baumbach GA, Saunders PTK, Ketcham CM, Bazer FW, Roberts RM (1991) Uteroferrin contains complex and high mannose-type oligosaccharides when synthesized in vitro. Mol Cell Biochem 105:107–117
Hayman AR, Dryden AJ, Chambers TJ, Warburton MJ (1991) Tartrate-resistant acid phosphatase from human osteoclastomas is translated as a single polypeptide. Biochem J 277:631–634
Janckila AJ, Parthasarathy RN, Parthasarathy LK, Seelan RS, Hsueh YC, Rissanen J, Alatalo SL, Halleen JM, Yam LT (2005) Properties and expression of human tartrate-resistant acid phosphatase isoform 5a by monocyte-derived cells. J Leukoc Biol 77:209–218
Ljusberg J, Ek-Rylander B, Andersson G (1999) Tartrate-resistant purple acid phosphatase is synthesized as a latent proenzyme and activated by cysteine proteinases. Biochem J 343:63–69
Funhoff EG, Ljusberg J, Wang Y, Andersson G, Averill BA (2001) Mutational analysis of the interaction between active site residues and the loop region in mammalian purple acid phosphatases. Biochemistry 40:11614–11622
Ljusberg J, Wang Y, Lång P, Norgård M, Dodds R, Hultenby K, Ek-Rylander B, Andersson G (2005) Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. J Biol Chem 280:28370–28381
Fagerlund KM, Ylipahkala H, Tiitinen SL, Janckila AJ, Hamilton S, Mäentausta O, Väänänen HK, Halleen JM (2006) Effects of proteolysis and reduction on phosphatase and ROS-generating activity of human tartrate-resistant acid phosphatase. Arch Biochem Biophys 449:1–7
Ketcham CM, Roberts RM, Simmen RCM, Nick HS (1989) Molecular cloning of the type 5, iron-containing, tartrate-resistant acid phosphatase from human placenta. J Biol Chem 264:557–563
Lord DK, Cross NCP, Bevilacqua MA, Rider SH, Gorman PA, Groves AV, Moss DW, Sheer D, Cox TM (1990) Type 5 acid phosphatase. Sequence, expression and chromosomal localization of a differentiation-associated protein of the human macrophage. Eur J Biochem 189:287–293
Ek-Rylander B, Bill P, Norgård M, Nilsson S, Andersson G (1991) Cloning, sequence and developmental expression of a type 5, tartrate-resistant, acid phosphatase of rat bone. J Biol Chem 266:24684–24689
Ling P, Roberts RM (1993) Uteroferrin and intracellular tartrate-resistant acid phosphatases are products of the same gene. J Biol Chem 268:6896–6902
Wang Y, Norgård M, Andersson G (2005) N-Glycosylation influences the latency and catalytic properties of mammalian purple acid phosphatase. Arch Biochem Biophys 435:147–156
Kawaguchi T, Nakano T, Sasagawa K, Ohashi T, Miura T, Komoda T (2008) Tartrate-resistant acid phosphatase 5a and 5b contain distinct sugar moieties. Clin Biochem 41:1245–1249
Schenk G, Guddat LW, Ge Y, Carrington LE, Hume DA, Hamilton S, deJersey J (2000) Identification of mammalian-like purple acid phosphatases in a wide range of plants. Gene 250:117–125
Nakazato H, Okamato T, Nishikoori M, Washio K, Morita N, Haraguchi K, Thompson GA Jr, Okuyama H (1998) The glycosylphosphatidylinositol-anchored phosphatase from Spirodela oligorrhiza is a purple acid phosphatase. Plant Physiol 118:1015–1020
Schenk G, Korsinczky MLJ, Hume DA, Hamilton S, deJersey J (2000) Purple acid phosphatases from bacteria: similarities to mammalian and plant enzymes. Gene 255:419–424
Kato T, Hara A, Nakayama T, Sawada H, Hamatake M, Matsumoto Y (1986) Purification and characterization of purple acid phosphatase from rat bone. Comp Biochem Physiol B Biochem Mol Biol 83:813–817
Lau KH, Freeman TK, Baylink DJ (1987) Purification and characterization of an acid phosphatase that displays phosphotyrosyl-protein phosphatase activity from bovine cortical bone matrix. J Biol Chem 262:1389–1397
Štĕpán JJ, Lau KHW, Mohan S, Singer FR, Baylink DJ (1990) Purification and N-terminal amino acid sequence of the tartrate-resistant acid phosphatase from human osteoclastoma: evidence for a single structure. Biochem Biophys Res Commun 168:792–800
Ek-Rylander B, Bergman T, Andersson G (1991) Characterization of a tartrate-resistant acid phosphatase (ATPase) from rat bone: hydrodynamic properties and N-terminal amino acid sequence. J Bone Miner Res 6:365–373
Robinson DB, Glew RH (1981) Substrate specificity of Gaucher spleen phosphoproteins phosphatase. Arch Biochem Biophys 210:186–199
Igarashi Y, Lee MY, Matsuzaki S (2001) Heparin column analysis of serum type 5 tartrate-resistant acid phosphatase isoforms. J Chromatogr B Biomed Sci Appl 757:269–276
Hayman AR, Cox TM (1994) Purple acid phosphatase of the human macrophage and osteoclast. Characterization, molecular properties and crystallization of the recombinant di-iron-oxo protein secreted by baculovirus-infected insect cells. J Biol Chem 269:1294–1300
Janckila AJ, Parthasarathy RN, Parthasarathy LK, Seelan RS, Yam LT (2002) Stable expression of human tartrate-resistant acid phosphatase isoforms by CHO cells. Clin Chim Acta 326:113–122
Kaija H, Jia J, Lindqvist Y, Andersson GN, Vihko PT (1999) Tartrate-resistant acid phosphatase: large scale production and purification of the recombinant enzyme, characterization and crystallization. J Bone Miner Res 14:424–430
Sträter N, Fröhlich R, Schiemann A, Krebs B, Körner M, Suerbaum H, Witzel H (1992) Crystallization and preliminary crystallographic data of purple acid phosphatase from red kidney bean. J Mol Biol 224:511–513
Durmus A, Eicken C, Sift BH, Kratel A, Kappl R, Hűttermann J, Krebs B (1999) The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas). Metal content and spectroscopic characterization. Eur J Biochem 260:709–716
Uppenberg J, Lindqvist F, Svensson C, Ek-Rylander B, Andersson G (1999) Crystal structure of a mammalian purple acid phosphatase. J Mol Biol 290:201–211
Lindqvist Y, Johansson E, Kaija H, Vihko P, Schneider G (1999) Three-dimensional structure of a mammalian purple acid phosphatase at 2.2 A resolution with a m-(Hydr)oxo bridged di-iron center. J Mol Biol 291:135–147
Sträter N, Jasper B, Scholte M, Krebs B, Duff AP, Langley DB, Han R, Averill BA, Freeman HC, Guss JM (2005) Crystal structures of recombinant human purple acid phosphatase with and without an inhibitory conformation of the repression loop. J Mol Biol 351:233–246
Davis JC, Averill BA (1982) Evidence for a spin-coupled binuclear iron unit at the active site of the purple acid phosphatase from beef spleen. Proc Natl Acad Sci USA 79:4623–4627
Merkx M, Averill BA (1998) The activity of oxidized bovine spleen purple acid phosphatase is due to an Fe(III)Zn(II) “impurity”. Biochemistry 37:11223–11231
Wynne CJ, Hamilton SE, Dionysius DA, Beck JL, de Jersey J (1995) Studies of the catalytic mechanism of pig purple acid phosphatase. Arch Biochem Biophys 319:133–141
Janckila AJ, Woodford TA, Lam KW, Li CY, Yam LT (1992) Protein-tyrosine phosphatase activity of hairy cell tartrate-resistant acid phosphatase. Leukemia 6:199–203
Valizadeh M, Schenk G, Nash K, Oddie GW, Guddat LW, Hume DA, de Jersey J, Burke TR Jr, Hamilton S (2004) Phosphotyrosyl peptides and analogues as substrates and inhibitors of purple acid phosphatase. Arch Biochem Biophys 424:154–162
Bresciani R, Von Figura K (1996) Dephosphorylation of the mannose-6-phosphate recognition marker is localized in late compartments of the endocytic route. Identification of purple acid phosphatase (uteroferrin) as the candidate phosphatase. Eur J Biochem 238:669–674
Sun P, Sleat DE, Lecocq M, Hayman AR, Jadot M, Lobel P (2008) Acid phosphatase 5 is responsible for removing the mannose-6-phosphate recognition marker from lysosomal proteins. Proc Natl Acad Sci USA 105:16590–16595
Campbell HD, Dionysius DA, Keough DT, Wilson BE, deJersey J, Zerner B (1978) Iron-containing acid phosphatases: comparison of the enzymes from beef spleen and pig allantoic fluid. Biochem Biophys Res Commun 82:615–620
Sibille JC, Doi K, Aisen P (1987) Hydroxyl radical formation and iron binding proteins. J Biol Chem 262:59–62
Halleen JM, Räisänen S, Salo JJ, Reddi SV, Roodman GD, Hentunen TA, Lehenkari PP, Kaija H, Vihko P, Väänänen HK (1999) Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase. J Biol Chem 274:22907–22910
Kaija H, Alatalo SL, Halleen JM, Lindqvist Y, Schneider G, Väänänan HK, Vihko P (2002) Phosphatase and oxygen radical-generating activities of mammalian purple acid phosphatase are functionally independent. Biochem Biophys Res Commun 292:128–132
Grimes R, Reddy SV, Leach RJ, Scarcez T, Roodman GD, Sakaguchi AY, Lalley PA, Windle JJ (1993) Assignment of the mouse tartrate-resistant acid phosphatase gene (Acp5) to chromosome 9. Genomics 15:421–422
Vallet JL, Fahrenkrug SC (2000) Structure of the gene for uteroferrin. DNA Cell Biol 19:689–696
Cassady AI, King AG, Cross NC, Hume DA (1993) Isolation and characterization of the genes encoding mouse and human type 5 acid phosphatase. Gene 130:201–207
Fleckenstein E, Drexler HG (1997) Tartrate-resistant acid phosphatase: gene structure and function. Leukemia 11:10–13
Walsh NC, Cahill M, Carninci P, Kawai J, Okazaki Y, Hayashizaki Y, Hume DA, Cassady AI (2003) Multiple tissue-specific promoters control expression of the murine tartrate-resistant acid phosphatase gene. Gene 307:111–123
Fliss AE, Michel FJ, Chen CL, Hofig A, Bazer FW, Chou JY, Simmen RCM (1991) Regulation of the uteroferrin gene promoter in endometrial cells: interactions among estrogen, progesterone, and prolactin. Endocrinology 129:697–704
Alcantara O, Reddy SV, Roodman GD, Boldt DH (1994) Transcriptional regulation of the tartrate-resistant acid phosphatase (TRAP) gene by iron. Biochem J 298:421–425
Fleckenstein E, Dirks W, Dehmel U, Drexler HG (1996) Cloning and characterization of the human tartrate-resistant acid phosphatase (TRAP) gene. Leukemia 10:637–643
Fleckenstein EC, Dirks WG, Drexler HG (2000) The human tartrate-resistant acid phosphatase (TRAP): involvement of the hemin responsive elements (HRE) in transcriptional regulation. Leuk Lymphoma 36:603–612
Reddy SV, Hundley JE, Windle JJ, Alcantara O, Linn R, Leach RJ, Boldt DH, Roodman GD (1995) Characterization of the mouse tartrate-resistant acid phosphatase (TRAP) gene promoter. J Bone Miner Res 10:601–606
Reddy SV, Alcantara O, Roodman GD, Boldt DH (1996) Inhibition of tartrate-resistant acid phosphatase gene expression by hemin and protoporphyrin IX. Identification of a hemin-responsive inhibitor of transcription. Blood 88:2288–2297
Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki SI, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602
Luchin A, Purdom G, Murphy K, Clark MY, Angel N, Cassady AI, Hume DA, Ostrowski MC (2000) The microphthalmia transcription factor regulates expression of the tartrate-resistant acid phosphatase gene during terminal differentiation of osteoclasts. J Bone Miner Res 15:451–460
Matsumoto M, Hisatake K, Nogi Y, Tsujimoto M (2001) Regulation of receptor activator of NFκB ligand-induced tartrate-resistant acid phosphatase gene expression by PU.1-interacting protein/interferon regulatory factor-4. J Biol Chem 276:33086–33092
Partington GA, Fuller K, Chambers TJ, Pondel M (2004) Mitf-PU.1 interactions with the tartrate-resistant acid phosphatase gene promoter during osteoclast differentiation. Bone 34:237–245
Mansky KC, Sulzbacher S, Purdom G, Nelson L, Hume DA, Rehli M, Ostrowski MC (2002) The microphthalmia transcription factor and the related helix-loop-helix zipper factors TFE-3 and TFE-C collaborate to activate the tartrate-resistant acid phosphatase promoter. J Leukocyte Biol 71:304–310
Hu R, Sharma SM, Bronisz A, Srinivasan R, Sankar U, Ostrowski MC (2007) Eos, MITF, and PU.1 recruit corepressors to osteoclast-specific genes in committed myeloid progenitors. Mol Cell Biol 27:4018–4027
Liu Y, Shi Z, Silveira A, Liu J, Sawadogo M, Yang H, Feng X (2003) Involvement of upstream stimulatory factors 1 and 2 in RANKL-induced transcription of tartrate-resistant acid phosphatase gene during osteoclast differentiation. J Biol Chem 278:20603–20611
Shi Z, Silveira A, Patel P, Feng X (2004) YY1 is involved in RANKL-induced transcription of the tartrate-resistant acid phosphatase gene in osteoclast differentiation. Gene 343:117–126
Pan W, Mathews W, Donohue JM, Ramnaraine ML, Lynch C, Selski DJ, Walsh N, Cassady AI, Clohisy DR (2005) Analysis of distinct tartrate-resistant acid phosphatase promoter regions in transgenic mice. J Biol Chem 280:4888–4893
Renegar RH, Bazer FW, Roberts RM (1982) Placental transport and distribution of uteroferrin in the fetal pig. Biol Reprod 27:1247–1260
Buhi WC, Ducsay CA, Bazer FW, Roberts RM (1982) Iron transfer between the purple phosphatase uteroferrin and transferrin and its possible role in iron metabolism of the fetal pig. J Biol Chem 257:1712–1723
Doi K, Ananaitis BC, Aisen P (1986) Absence of iron transfer from uteroferrin to transferrin. J Biol Chem 261:14936–14938
Nuttleman PR, Roberts RM (1990) Transfer of iron from uteroferrin (purple acid phosphatase) to transferrin related to acid phosphatase activity. J Biol Chem 265:12192–12199
Ek-Rylander B, Flores M, Wendel M, Heinegård D, Andersson G (1994) Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. Modulation of osteoclast adhesion in vitro. J Biol Chem 269:14853–14856
Ljusberg J, Dodds RA, Lark MW, Gowen M, Lazner F, Kola I, Ek-Rylander B, Andersson G (1999) Tartrate-resistant acid phosphatase is proteolytically cleaved in vivo by cathepsin K. J Bone Miner Res 14:S358
Andersson G, Ek-Rylander B, Hollberg K, Ljusberg-Sjölander J, Lång P, Norgård M, Wang Y, Zhang SJ (2003) TRAP as an osteopontin phosphatase. J Bone Miner Res 18:1912–1915
Razzouk S, Brunn JC, Qin C, Tye CE, Goldberg HA, Butler WT (2002) Osteopontin posttranslational modifications, possibly phosphorylation, are required for in vitro bone resorption but not osteoclast adhesion. Bone 30:40–47
Vääräniemi J, Halleen JM, Kaarlonen K, Ylipahkala H, Alatalo SL, Andersson G, Kaija H, Vihko P, Väänänen HK (2004) Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res 19:1432–1440
Halleen JM, Räisänen SR, Alatalo SL, Väänänen HK (2003) Potential function for the ROS-generating activity of TRAP. J Bone Miner Res 18:1908–1911
Hayman AR, Jones SJ, Boyde A, Foster D, Colledge WH, Carlton MB, Evans MJ, Cox TM (1996) Mice lacking tartrate-resistant acid phosphatase (Acp5) have disrupted endochondral ossification and mild osteoporosis. Development 122:3151–3162
Angel NZ, Walsh N, Forwood MR, Ostrowski MC, Cassady AI, Hume DA (2000) Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. J Bone Miner Res 15:103–110
Hayman AR (2008) Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity 41:218–223
Bune AJ, Hayman AR, Evans MJ, Cox TM (2001) Mice lacking tartrate-resistant acid phosphatase (Acp5) have disordered macrophage inflammatory responses and reduced clearance of the pathogen, Staphylococcus aureus. Immunology 102:103–113
Esfandiari E, Bailey M, Stokes CR, Cox TM, Evans MJ, Hayman AR (2006) TRAP influences Th1 pathways by affecting dendritic cell function. J Bone Miner Res 21:1367–1376
Räisänen SR, Alatalo SL, Ylipahkala H, Halleen JM, Cassady AI, Hume DA, Väänänen HK (2005) Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing. Biochem Biophys Res Commun 331:120–126
Suter A, Everts V, Boyde A, Jones SJ, Lüllmann-Rauch R, Hartmann D, Hayman AR, Cox TM, Evans MJ, Meister T, von Figura K, Saftig P (2001) Overlapping functions of lysosomal acid phosphatase (LAP) and tartrate-resistant acid phosphatase (Acp5) revealed by doubly deficient mice. Development 128:4899–4910
Sheu TJ, Schwarz EM, O’Keefe RJ, Rosier RN, Puzas JE (2002) Use of a phage display technique to identify potential osteoblast binding sites within osteoclast lacunae. J Bone Miner Res 17:915–922
Mitić N, Valizadeh M, Leung EW, de Jersey J, Hamilton S, Hume DA, Cassady AI, Schenk G (2005) Human tartrate-resistant acid phosphatase becomes an effective ATPase upon proteolytic activation. Arch Biochem Biophys 439:154–164
Lam KW, Siemens Sun T, Li CY, Yam LT (1982) Enzyme immunoassay for tartrate-resistant acid phosphatase. Clin Chem 28:467–470
Echetebu ZO, Cox TM, Moss DW (1987) Antibodies to porcine uteroferrin used in measurement of human tartrate-resistant acid phosphatase. Clin Chem 33:1832–1836
Kraenzlin ME, Lau KHW, Liang L, Freeman TK, Singer FR, Stepan J, Baylink DJ (1990) Development of an immunoassay for human serum osteoclastic tartrate-resistant acid phosphatase. J Clin Endocrinol Metab 71:442–451
Cheung CK, Panesar NS, Haines C, Masarei J, Swaminathan R (1995) Immunoassay of a tartrate-resistant acid phosphatase in serum. Clin Chem 41:679–686
Chamberlain P, Compston J, Cos TM, Hayman AR, Imrie RC, Reynolds K, Holmes SD (1995) Generation and characterization of monoclonal antibodies to human type 5 tartrate-resistant acid phosphatase: development of a specific immunoassay of the isoenzymes in serum. Clin Chem 41:1495–1499
Halleen JM, Hentunen TA, Karp M, Käkönen SM, Pettersson K, Väänänen HK (1998) Characterization of serum tartrate-resistant acid phosphatase and development of a direct two-site immunoassay. J Bone Miner Res 15:683–687
Nakasato YR, Janckila AJ, Halleen JM, Väänänen HK, Walton SP, Yam LT (1999) Clinical significance of immunoassays for type 5 tartrate-resistant acid phosphatase. Clin Chem 45:2150–2157
Miyazaki T, Matsunaga T, Miyazaki S, Hokari S, Komoda T (2002) Characterization of four monoclonal antibodies to recombinant human tartrate-resistant acid phosphatase. Hybridoma Hybridomics 21:191–195
Miyazaki S, Igarishi M, Nagata A, Tominaga Y, Onodera K, Komoda T (2003) Development of immunoassays for type 5 tartrate-resistant acid phosphatase in human serum. Clin Chim Acta 329:109–115
Halleen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Väänänen HK (2000) Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 15:1337–1345
Janckila AJ, Takahashi K, Sun SZ, Yam LT (2001) Tartrate-resistant acid phosphatase isoform 5b as serum marker for osteoclastic activity. Clin Chem 47:74–80
Halleen JM, Ylipahkala H, Alatalo SL, Janckila AJ, Heikkinen JE, Suominen H, Cheng S, Väänänen HK (2002) Serum tartrate-resistant acid phosphatase 5b, but not 5a, correlates with other markers of bone turnover and bone mineral density. Calcif Tissue Int 71:20–25
Ohashi T, Igarashi Y, Mochizuki Y, Miura T, Inaba N, Katayama K, Tomonaga T, Nomura F (2007) Development of a novel fragments absorbed immunocapture enzyme assay system for tartrate-resistant acid phosphatase 5b. Clin Chim Acta 376:205–212
Ylipahkala H, Fagerlund KM, Janckila A, Houston B, Laurie D, Halleen JM (2009) Specificity and clinical performance of two commercial TRAP 5b assays. J Clin Lab 55(5–6):223–228
Nakanishi M, Yoh K, Miura T, Ohashi T, Rai SK, Uchida K (2000) Development of a kinetic assay for band 5b tartrate-resistant acid phosphatase activity in serum. Clin Chem 46:469–473
Janckila AJ, Simons RM, Yam LT (2004) Alternative immunoassay for tartrate-resistant acid phosphatase isoform 5b using the fluorogenic substrate naphthol ASBI-phosphate and heparin. Clin Chim Acta 347:157–167
Fagerlund KM, Janckila AJ, Ylipahkala H, Tiitinen SL, Nenonen A, Cheng S, Uusi-Rasi K, Yam LT, Väänänen HK, Halleen JM (2008) Clinical performance of six different serum tartrate-resistant acid phosphatase assays for monitoring alendronate treatment. Clin Lab 54:347–354
Alatalo SL, Ivaska KK, Wagnespack SG, Econs MJ, Väänänen HK, Halleen JM (2004) Osteoclast-derived tartrate-resistant acid phosphatase 5b in Albers-Schoenberg disease (type II autosomal-dominant osteopetrosis). Clin Chem 50:883–890
Alatalo SL, Peng Z, Janckila AJ, Kaija H, Vihko P, Väänänen HK, Halleen JM (2003) A novel immunoassay for the determination of tartrate-resistant acid phosphatase 5b from rat serum. J Bone Miner Res 18:134–139
Rissanen JP, Suominen MI, Peng Z, Halleen JM (2008) Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int 82:108–115
Alatalo SL, Halleen JM, Hentunen TA, Mönkkönen J, Väänänen HK (2000) Rapid screening method for osteoclast differentiation in vitro that measures tartrate-resistant acid phosphatase 5b activity secreted into culture medium. Clin Chem 46:1751–1754
Chen CJ, Chao TY, Chu DM, Janckila AJ, Cheng SN (2004) Osteoblast and osteoclast activity in a malignant infantile osteopetrosis patient following bone marrow transplantation. J Pediatr Hematol Oncol 26:5–8
Chu P, Chao TY, Lin YF, Janckila AJ, Yam LT (2003) Correlation between histomorphometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am J Kidney Dis 41:1052–1059
Capparelli C, Morony S, Warmington K, Adamu S, Lacey D, Dunstan CR, Stouch B, Martin S, Kostenuik PJ (2003) Sustained antiresorptive effects after a single treatment with human recombinant osteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J Bone Miner Res 18:852–858
Rissanen JP, Ylipahkala H, Fagerlund KM, Long C, Vaananen HK, Halleen JM (2009) Improved methods for testing antiresorptive compounds in human osteoclast cultures. J Bone Miner Metab 27:105–109
Greenspan SL, Parker RA, Ferguson L, Rosen HN, Maitland-Ramsey L, Karpf DB (1998) Early changes in biochemical markers of bone turnover predict the long-term response to alendronate therapy in representative elderly women: a randomized clinical trial. J Bone Miner Res 13:1431–1438
Woitge HW, Seibel MJ (2000) Risk assessment for osteoporosis II. Biochemical markers of bone turnover: bone resorption indices. Clin Lab Med 20:503–525
Demers LM, Costa L, Lipton A (2000) Biochemical markers and skeletal metastasis. Cancer 88:2919–2926
Fohr B, Dunstan CR, Seibel MJ (2003) Markers of bone remodeling in metastatic bone disease. J Clin Endocrinol Metab 88:5059–5075
Hannon R, Blumsohn A, Naylor K, Eastell R (1998) Response of biochemical markers of bone turnover to hormone replacement therapy: impact of biological variability. J Bone Miner Res 13:1124–1133
Hannon RA, Clowes JA, Eagleton AC, Hadari AA, Eastell R, Blumsohn A (2004) Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone 34:197–204
Nenonen A, Cheng S, Ivaska KK, Alatalo SL, Lehtimäki T, Schmidt-Gayk H, Uusi-Rasi K, Heionen A, Kannus P, Sievänen H, Vuori I, Väänänen HK, Halleen JM (2005) Serum TRAP 5b is a useful marker for monitoring alendronate treatment: comparison with other markers of bone turnover. J Bone Miner Res 20:1804–1812
Gerdhem P, Ivaska KK, Alatalo SL, Halleen JM, Hellman J, Isaksson A, Pettersson K, Väänänen HK, Åkesson K, Obrant KJ (2004) Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 19:386–393
Lipton A, Costa L, Ali S, Demers L (2001) Use of markers of bone turnover for monitoring bone metastasis and the response to therapy. Semin Oncol 28(Suppl II):54–59
Saad F (2006) Optimizing patient therapy: the role of bone markers? Cancer Treat Rev 32(Suppl 1):3–6
Coleman R, Brown J, Terpos E, Lipton A, Smith MR, Cook R, Major P (2008) Bone markers and their prognostic value in metastatic bone disease: clinical evidence and future directions. Cancer Treat Rev 34:629–639
Wada N, Fujisaka M, Ishii S, Ikeda T, Kitajima M (2001) Evaluation of bone metabolic markers in breast cancer with bone metastasis. Breast Cancer 8:131–137
Capeller B, Caffier H, Sutterlin MW, Dietl J (2003) Evaluation of tartrate-resistant acid phosphatase (TRAP) 5b as serum marker of bone metastasis in human breast cancer. Anticancer Res 23:1011–1016
Chao TY, Yu JC, Ku CH, Chen MM, Lee SH, Janckila AJ, Yam LT (2005) Tartrate-resistant acid phosphatase 5b is a useful marker for extensive bone metastasis in breast cancer patients. Clin Cancer Res 15:544–550
Lipton A (2006) Biochemical bone markers in breast cancer. Cancer Treat Rev 32(Suppl 1):20–22
Koizumi M, Takahashi S, Ogata E (2003) Comparison of serum bone resorption markers in the diagnosis of skeletal metastasis. Anticancer Res 23:4095–4099
Korpela J, Tiitinen SL, Hiekkanen H, Halleen JM, Selander KS, Väänänen HK, Suominen P, Helenius H, Salminen E (2006) Serum TRAP 5b and ICTP as markers of bone metastasis in breast cancer. Anticancer Res 26:3127–3132
Voorzanger-Rousselot N, Juillet F, Mareau E, Zimmermann J, Kalabic T, Garnero P (2006) Association of 12 serum biochemical markers of angiogenesis, tumor invasion and bone turnover with bone metastasis from breast cancer: a cross-sectional and longitudinal evaluation. Br J Cancer 95:506–514
Terpos E, de la Fuente J, Szydlo R, Hatjiharissi E, Viniou N, Meletis J, Yataganas X, Goldman JM, Rahemtulla A (2003) Tartrate-resistant acid phosphatase isoform 5b: a novel serum marker for monitoring bone disease in multiple myeloma. Int J Cancer 106:455–457
Terpos E (2006) Biochemical markers of bone metabolism in multiple myeloma. Cancer Treat Rev 32(Suppl 1):15–19
Lyubimova NV, Pashkov MV, Tyulyandin SA, Gol’dberg VE, Kushlinskii NE (2004) Tartrate-resistant acid phosphatase as a marker of bone metastasis in patients with breast cancer and prostate cancer. Bull Exp Biol Med 138:77–79
Jung K, Lein M, Stephan C, Von Hösslin K, Semjonow A, Sinha P, Loening SA, Schnorr D (2004) Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int J Cancer 111:783–791
Salminen E, Ala-Houhala M, Korppela J, Varpula M, Tiitenen SL, Halleen JM, Väänänen HK (2005) Serum tartrate-resistant acid phosphatase 5b (TRAP 5b) as a marker of skeletal changes in prostate cancer. Acta Oncol 44:742–747
Hegele A, Wahl HG, Varga Z, Sevinc S, Koliva L, Schrader AJ, Hofmann R, Olbert P (2007) Biochemical markers of bone turnover in patients with localized and metastasized prostate cancer. BJU Int 99:330–334
Ozu C, Nakashima J, Horiguchi Y, Oya M, Ohigashi T, Murai M (2008) Prediction of bone metastasis by combination of tartrate-resistant acid phosphatase, alkaline phosphatase and prostate specific antigen in patients with prostate cancer. Int J Urol 15:419–422
Salminen EK, Kallioinen MJ, Ala-Houhala MA, Vihinen PP, Tiitinen SL, Varpula M, Vahlberg TJ (2006) Survival markers related to bone metastasis in prostate cancer. Anticancer Res 26:4879–4884
Leeming DJ, Koizumi M, Byrjalsen I, Li B, Qvist P, Tanko LB (2006) The relative use of eight collagenous and noncollagenous markers for diagnosis of skeletal metastasis in breast, prostate, or lung cancer patients. Cancer Epidemiol Biomarkers Prev 15:32–38
Ebert W, Muley TH, Herb KP, Schmidt-Gayk H (2004) Comparison of bone scintigraphy with bone markers in the diagnosis of bone metastasis in lung carcinoma patients. Anticancer Res 24:3193–3202
Avnet S, Longhi A, Salerno M, Halleen JM, Perut F, Granchi D, Ferrari S, Bertoni F, Giunti A, Baldini N (2008) Increased osteoclast activity is associated with aggressiveness of osteosarcoma. Int J Oncol 33:1231–1238
Martinetti A, Seregni E, Ripamonti C, Ferrari L, De Conno F, Miceli R, Pallotti F, Coliva A, Biancolini D, Bombardieri E (2002) Serum levels of tartrate-resistant acid phosphatase-5b in breast cancer patients treated with pamidronate. Int J Biol Markers 17:253–258
Tsai SH, Chen CY, Ku CH, Janckila AJ, Yam LT, Yu JC, Chuang KW, Chao TY (2007) The semiquantitative bone scintigraphy index correlates with serum tartrate-resistant acid phosphatase activity in breast cancer patients with bone metastasis. Mayo Clin Proc 82:917–926
Terpos E, Viniou N, de la Fuente J, Meletis J, Voskaridou E, Karkantaris C, Vaipou los G, Palermos J, Yataganas X, Goldman JM, Rahemtulla A (2003) Pamidronate is superior to ibandronate in decreasing bone resorption, interleukin-6 and β2-microglobulin in multiple myeloma. Eur J Haematol 70:34–42
Takahashi K, Janckila AJ, Sun SZ, Lederer ED, Ray PC, Yam LT (2000) Electrophoretic study of tartrate-resistant acid phosphatase in endstage renal disease and rheumatoid arthritis. Clin Chim Acta 301:147–158
Yamada S, Inaba M, Kurajoh M, Shidara K, Imanishi Y, Ishimura E, Nishizawa Y (2008) Utility of serum tartrate-resistant acid phosphatase (TRAP5b) as a bone resorption marker in patients with chronic kidney disease: independence from renal dysfunction. Clin Endocrinol 69:189–196
Avbersek-Luznik I, Balon BP, Rus I, Marc J (2005) Increased bone resorption in HD patients: is it caused by elevated RANKL synthesis? Nephrol Dial Transplant 20:566–570
Małyszko J, Małyszko JS, Pawlak K, Wołczyński S, Myśliwiec M (2006) Tartrate-resistant acid phosphatase 5b and its correlations with other markers of bone metabolism in kidney transplant recipients and dialyzed patients. Adv Med Sci 51:69–72
Shidara K, Inaba M, Okuno S, Yamada S, Kumeda Y, Imanishi Y, Yamakawa T, Ishimura E, Nishizawa Y (2008) Serum levels of TRAP 5b, a new bone resorption marker unaffected by renal dysfunction, as a useful marker of cortical bone loss in hemodialysis patients. Calcif Tissue Int 82:278–287
Peters BS, Moyses RM, Jorgetti V, Martini LA (2007) Effects of parathyroidectomy on bone remodeling markers and vitamin D status in patients with chronic kidney disease-mineral and bone disorder. Int Urol Nephrol 39:1251–1256
Fahrleitner-Pammer A, Herberth J, Browning SR, Obermayer-Pietsch B, Wirnsberger G, Holzer H, Dobnig H, Malluche HH (2008) Bone markers predict cardiovascular events in chronic kidney disease. J Bone Miner Res 23:1850–1858
Garnero P, Delmas PD (2004) Noninvasive techniques for assessing skeletal changes in inflammatory arthritis: bone biomarkers. Curr Opin Rheumatol 16:428–434
Gravallese EM, Harada Y, Wang JT, Gorn AH, Thornhill TS, Goldring SR (1998) Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 152:943–951
Itonaga I, Fujikawa Y, Sabokbar A, Murray DW, Athanasou NA (2000) Rheumatoid arthritis synovial macrophage-osteoclast differentiation is osteoprotegerin ligand-dependent. J Pathol 192:97–104
Janckila AJ, Neustadt DH, Nakasato YR, Halleen JM, Hentunen T, Yam LT (2002) Serum tartrate-resistant acid phosphatase isoforms in rheumatoid arthritis. Clin Chim Acta 320:49–58
Chao TY, Lee SH, Chen MM, Neustadt DH, Chaudhry UA, Yam LT, Janckila AJ (2005) Development of immunoassays for serum tartrate-resistant acid phosphatase isoform 5a. Clin Chim Acta 359:132–140
Toussirot É, Dumoulin G, Saas P, Nguyen NU, Le Huédé G, Wendling D (2008) Increased tartrate-resistant acid phosphatase serum levels in ankylosing spondylitis and relationship with the inflammatory process. Ann Rheum Dis 67:430–431
Janckila AJ, Neustadt DH, Yam LT (2008) Significance of serum TRAP in rheumatoid arthritis. J Bone Miner Res 23:1287–1295
Yaziji H, Janckila AJ, Lear SC, Martin AW, Yam LT (1995) Immunohistochemical detection of tartrate-resistant acid phosphatase in non-hematopoietic human tissues. Am J Clin Pathol 104:397–402
Janckila AJ, Slone SP, Lear SC, Martin A, Yam LT (2007) Tartrate-resistant acid phosphatase as an immunohistochemical marker for inflammatory macrophages. Am J Clin Pathol 127:556–566
Hayman AR, Bune AJ, Cox TM (2000) Widespread expression of tartrate-resistant acid phosphatase (Acp5) in the mouse embryo. J Anat 196:433–441
Hayman AR, Bune AJ, Bradley JR, Rashbass J, Cox TM (2000) Osteoclastic tartrate-resistant acid phosphatase (Acp5): its localization to dendritic cells and diverse murine tissues. J Histochem Cytochem 48:219–227
Lång P, Schultzberg M, Andersson G (2001) Expression and distribution of tartrate-resistant purple acid phosphatase in the rat nervous system. J Histochem Cytochem 49:379–396
Lång P, Andersson G (2005) Differential expression of monomeric and proteolytically processed forms of purple/tartrate-resistant acid phosphatase in rat tissues. Cell Mol Life Sci 62:905–918
Janckila AJ, Lederer ED, Price BA, Yam LT (2009) Tartrate-resistant acid phosphatase isoform 5a as an inflammation marker in end-stage renal disease. Clin Nephrol 71:387–396
Lång P, van Harmelen V, Ryden M, Kaaman M, Parini P, Carneheim C, Cassady AI, Hume DA, Andersson G, Arner P (2008) Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity. PloS ONE 5(3):e1713
Tilg H, Moschen AR (2008) Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 14:222–231
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808
Shih KC, Janckila AJ, Kwok CF, Ho LT, Chou YC, Chao TY (2009) Effects of exercise on insulin sensitivity, inflammatory cytokines and serum tartrate-resistant acid phosphatase 5a in obese Chinese male adolescents. Metabolism (in press)
Acknowledgments
The authors fondly acknowledge the long friendship and collaborations of Dr. Chin-Yang Li and Dr. Kwok-Wai “Bill” Lam since the initiation of our studies on TRAP. Early success was possible only through their hard work and dedication. The dedication and support of our wives, Barbara and Julia, have been equally important during long hours in the lab. The valuable contributions made in the lab and clinic over the years by colleagues, fellows, residents, students, and associates at the University of Louisville, School of Medicine, are also heartily acknowledged. We also thank Dr. Jussi Halleen and his colleagues and students from the Anatomy Department, University of Turku, who so generously shared their talents, ideas, and data about TRAP and bone metabolism. Dr. Tsu-Yi Chao and members of his Hematology/Oncology Division at the TriService General Hospital in Taipei deserve our many thanks for their tireless efforts to promote clinical research on the application of TRAP in cancer and other diseases. The authors are supported by grants from the Research Service of the U.S. Department of Veterans Affairs and by funds from the Clinical Research Foundation.
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors have stated that they have no conflicts of interest.
Rights and permissions
About this article
Cite this article
Janckila, A.J., Yam, L.T. Biology and Clinical Significance of Tartrate-Resistant Acid Phosphatases: New Perspectives on an Old Enzyme. Calcif Tissue Int 85, 465–483 (2009). https://doi.org/10.1007/s00223-009-9309-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00223-009-9309-8