Skip to main content

Advertisement

Log in

Effects of a Prolonged Submersion on Bone Strength and Metabolism in Young Healthy Submariners

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Submariners taking part in prolonged missions are exposed to environmental factors that may adversely affect bone health. Among these, relatively high levels of CO2, lack of sunlight exposure affecting vitamin D metabolism, limited physical activity, and altered dietary habits. The aims of this study were to examine the effect of a prolonged submersion (30 days) on changes in bone strength using quantitative bone speed of sound and in markers of bone metabolism that include bone turnover (BAP, PINP, TRAP5b, and CTx) and endocrine regulators (serum calcium, PTH, and 25[OH]D) in a group of 32 young healthy male submariners. The prolonged submersion led to increases in body weight and BMI and to a decrease in fitness level. There was a significant decrease in bone strength following the submersion. Speed of sound exhibited continued decline at 4 weeks after return to shore and returned to baseline levels at the 6-month follow-up. There was a significant increase in circulating calcium level. PTH and 25(OH)D levels decreased significantly. Significant decreases were observed in both TRAP5b and CTx levels, markers of bone resorption, as well as in N-terminal propeptide of type I collagen (PINP), a bone formation marker. Prolonged submersion led to a significant decrease in bone strength, accompanied by an overall decrease in bone metabolism. Bone strength was regained only 6 months after return to shore. Prevention and/or rehabilitation programs should be developed following periods of relative disuse even for young submariners. The effects of repeated prolonged submersions on bone health are yet to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tansey WA, Wilson JM, Schaefer KE (1979) Analysis of health data from 10 years of Polaris submarine patrols. Undersea Biomed Res 6(Suppl):S217–S246

    PubMed  Google Scholar 

  2. Davies DM, Morris JE (1979) Carbon dioxide and vitamin D effects on calcium metabolism in nuclear submariners: a review. Undersea Biomed Res 6(Suppl):S71–S80

    PubMed  Google Scholar 

  3. Meier C, Liu PY, Handelsman DJ, Seibel MJ (2005) Endocrine regulation of bone turnover in men. Clin Endocrinol (Oxf) 63:603–616

    Article  CAS  Google Scholar 

  4. Meier C, Woitge HW, Witte K, Lemmer B, Seibel MJ (2004) Supplementation with oral vitamin D3 and calcium during winter prevents seasonal bone loss: a randomized controlled open-label prospective trial. J Bone Miner Res 19:1221–1230

    Article  CAS  PubMed  Google Scholar 

  5. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    Article  CAS  PubMed  Google Scholar 

  6. Riggs BL, Melton LJ III (1986) Involutional osteoporosis. N Engl J Med 314:1676–1686

    Article  CAS  PubMed  Google Scholar 

  7. Foldes AJ, Rimon A, Keinan DD, Popovtzer MM (1995) Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone 17:363–367

    Article  CAS  PubMed  Google Scholar 

  8. Prins SH, Jorgensen HL, Jorgensen LV, Hassager C (1998) The role of quantitative ultrasound in the assessment of bone: a review. Clin Physiol 18:3–17

    Article  CAS  PubMed  Google Scholar 

  9. Bauer DC, Gluer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, Black DM (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 157:629–634

    Article  CAS  PubMed  Google Scholar 

  10. Jaworski M, Lebiedowski M, Lorenc RS, Trempe J (1995) Ultrasound bone measurement in pediatric subjects. Calcif Tissue Int 56:368–371

    Article  CAS  PubMed  Google Scholar 

  11. Kang C, Speller R (1998) Comparison of ultrasound and dual energy X-ray absorptiometry measurements in the calcaneus. Br J Radiol 71:861–867

    CAS  PubMed  Google Scholar 

  12. Prevrhal S, Fuerst T, Fan B, Njeh C, Hans D, Uffmann M, Srivastav S, Genant HK (2001) Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos Int 12:28–34

    Article  CAS  PubMed  Google Scholar 

  13. Bauer DC, Gluer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, Black DM (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 157:629–634

    Article  CAS  PubMed  Google Scholar 

  14. Moayyeri A, Kaptoge S, Dalzell N, Bingham S, Luben RN, Wareham NJ, Reeve J, Khaw KT (2009) Is QUS or DXA better for predicting the 10-year absolute risk of fracture? J Bone Miner Res 24:1319–1325

    Article  PubMed  Google Scholar 

  15. Eliakim A, Nemet D, Friedland O, Dolfin T, Regev RH (2002) Spontaneous activity in premature infants affects bone strength. J Perinatol 22:650–652

    Article  PubMed  Google Scholar 

  16. Delmas PD (1995) Biochemical markers of bone turnover. Acta Orthop Scand Suppl 266:176–182

    CAS  PubMed  Google Scholar 

  17. Eriksen EF, Charles P, Melsen F, Mosekilde L, Risteli L, Risteli J (1993) Serum markers of type I collagen formation and degradation in metabolic bone disease: correlation with bone histomorphometry. J Bone Miner Res 8:127–132

    CAS  PubMed  Google Scholar 

  18. Watts NB (1999) Clinical utility of biochemical markers of bone remodeling. Clin Chem 45:1359–1368

    CAS  PubMed  Google Scholar 

  19. Zerath E, Holy X, Gaud R, Schmitt D (1999) Decreased serum levels of 1,25-(OH)2 vitamin D during 1 year of sunlight deprivation in the Antarctic. Eur J Appl Physiol Occup Physiol 79:141–147

    Article  CAS  PubMed  Google Scholar 

  20. Dimai HP, Domej W, Leb G, Lau KH (2001) Bone loss in patients with untreated chronic obstructive pulmonary disease is mediated by an increase in bone resorption associated with hypercapnia. J Bone Miner Res 16:2132–2141

    Article  CAS  PubMed  Google Scholar 

  21. Bloomfield SA, Allen MR, Hogan HA, Delp MD (2002) Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats. Bone 31:149–157

    Article  CAS  PubMed  Google Scholar 

  22. Pavy-Le TA, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101:143–194

    Article  Google Scholar 

  23. Rittweger J, Simunic B, Bilancio G, De Santo NG, Cirillo M, Biolo G, Pisot R, Eiken O, Mekjavic IB, Narici M (2009) Bone loss in the lower leg during 35 days of bed rest is predominantly from the cortical compartment. Bone 44:612–618

    Article  PubMed  Google Scholar 

  24. Beck BR, Snow CM (2003) Bone health across the lifespan—exercising our options. Exerc Sport Sci Rev 31:117–122

    Article  PubMed  Google Scholar 

  25. Eliakim A, Raisz LG, Brasel JA, Cooper DM (1997) Evidence for increased bone formation following a brief endurance-type training intervention in adolescent males. J Bone Miner Res 12:1708–1713

    Article  CAS  PubMed  Google Scholar 

  26. Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston CC Jr (1991) Role of physical activity in the development of skeletal mass in children. J Bone Miner Res 6:1227–1233

    Article  CAS  PubMed  Google Scholar 

  27. Mazess RB, Whedon GD (1983) Immobilization and bone. Calcif Tissue Int 35:265–267

    Article  CAS  PubMed  Google Scholar 

  28. Prevrhal S, Fuerst T, Fan B, Njeh C, Hans D, Uffmann M, Srivastav S, Genant HK (2001) Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos Int 12:28–34

    Article  CAS  PubMed  Google Scholar 

  29. Gilman SC, Biersner RJ, Bondi KR (1982) Effect of a 68-day submarine patrol on serum 25-hydroxyvitamin D levels in healthy men. Int J Vitam Nutr Res 52:63–67

    CAS  PubMed  Google Scholar 

  30. Duplessis CA, Harris EB, Watenpaugh DE, Horn WG (2005) Vitamin D supplementation in underway submariners. Aviat Space Environ Med 76:569–575

    CAS  PubMed  Google Scholar 

  31. Sato Y, Kaji M, Higuchi F, Yanagida I, Oishi K, Oizumi K (2001) Changes in bone and calcium metabolism following hip fracture in elderly patients. Osteoporos Int 12:445–449

    Article  CAS  PubMed  Google Scholar 

  32. Dlugos DJ, Perrotta PL, Horn WG (1995) Effects of the submarine environment on renal-stone risk factors and vitamin D metabolism. Undersea Hyperb Med 22:145–152

    CAS  PubMed  Google Scholar 

  33. Messier AA, Heyder E, Braithwaite WR, McCluggage C, Peck A, Schaefer KE (1979) Calcium, magnesium, and phosphorus metabolism, and parathyroid-calcitonin function during prolonged exposure to elevated CO2 concentrations on submarines. Undersea Biomed Res 6(Suppl):S57–S70

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Nemet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luria, T., Matsliah, Y., Adir, Y. et al. Effects of a Prolonged Submersion on Bone Strength and Metabolism in Young Healthy Submariners. Calcif Tissue Int 86, 8–13 (2010). https://doi.org/10.1007/s00223-009-9308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9308-9

Keywords

Navigation