Skip to main content

Advertisement

Log in

Residue 826 in the Calcium-Sensing Receptor Is Implicated in the Response to Calcium and to R-568 Calcimimetic Compound

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Within the extracellular loops of the seven-transmembrane domain of the calcium-sensing receptor (CaR) there is a region (I819–E837) relevant for calcimimetic activity. As the naturally occurring variant Ala826Thr is within this important region, it may be postulated that this change may influence the CaR response to calcium and R-568. Human embryonic kidney (HEK-293) cells transiently transfected with three different human CaRs (wild-type [A826], variant allele [T826], and artificial mutant [W826]) were used to test the ability of calcium alone or in combination with the calcimimetic R-568 to modulate CaR activity. CaR activation was detected by flow cytometry using a fluorescent probe. Intracellular calcium changes were measured in response to changes in extracellular calcium alone or with different R-568 concentrations. The change of the alanine in the 826 position (A826) for threonine (T826) worsened calcium sensitivity, increasing the EC50 value from 2.34 ± 0.48 mM (A826, wild-type) to 2.96 ± 0.75 mM (T826) (P < 0.05). The T826 receptor reached a similar response with 1 μM R-568 compared with the wild-type receptor. On the contrary, the artificial introduction of a tryptophan in the same position (W826) did not affect calcium sensitivity (EC50 = 2.64 ± 0.81 mM) but reduced the ability of the receptor to respond to R-568. The results demonstrate the importance of the 826 residue in the CaR response to calcium and calcimimetics. Since the A826T change was described as a natural variant, the differences in the calcium and calcimimetic responses observed between the alleles could have potential clinical impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brown EM (2007) Clinical lessons from the calcium-sensing receptor. Nat Clin Pract Endocrinol Metab 3:122–133

    Article  CAS  PubMed  Google Scholar 

  2. Ray K, Hauschild BC, Steinbach PJ, Goldsmith PK, Hauache O, Spiegel AM (1999) Identification of the cysteine residues in the amino-terminal extracellular domain of the human Ca2+ receptor critical for dimerization. Implications for function of monomeric Ca2+ receptor. J Biol Chem 274:27642–27650

    Article  CAS  PubMed  Google Scholar 

  3. Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297

    CAS  PubMed  Google Scholar 

  4. Ray K, Northup J (2002) Evidence for distinct cation and calcimimetic compound (NPS 568) recognition domains in the transmembrane regions of the human Ca2+ receptor. J Biol Chem 277:18908–18913

    Article  CAS  PubMed  Google Scholar 

  5. Hu J, Spiegel AM (2003) Naturally occurring mutations of the extracellular Ca2+-sensing receptor: implications for its structure and function. Trends Endocrinol Metab 14:282–288

    Article  CAS  PubMed  Google Scholar 

  6. Pearce SH (2002) Clinical disorders of extracellular calcium-sensing and the molecular biology of the calcium-sensing receptor. Ann Med 34:201–206

    CAS  PubMed  Google Scholar 

  7. Alvarez-Hernandez D, Santamaria I, Rodriguez-Garcia M, Iglesias P, Delgado-Lillo R, Cannata-Andia JB (2003) A novel mutation in the calcium-sensing receptor responsible for autosomal dominant hypocalcemia in a family with two uncommon parathyroid hormone polymorphisms. J Mol Endocrinol 31:255–262

    Article  CAS  PubMed  Google Scholar 

  8. Brown EM (1999) Physiology and pathophysiology of the extracellular calcium-sensing receptor. Am J Med 106:238–253

    Article  CAS  PubMed  Google Scholar 

  9. Hu J, McLarnon SJ, Mora S, Jiang J, Thomas C, Jacobson KA, Spiegel AM (2005) A region in the seven-transmembrane domain of the human Ca2+ receptor critical for response to Ca2+. J Biol Chem 280:5113–5120

    Article  CAS  PubMed  Google Scholar 

  10. Zhao XM, Hauache O, Goldsmith PK, Collins R, Spiegel AM (1999) A missense mutation in the seventh transmembrane domain constitutively activates the human Ca2+ receptor. FEBS Lett 448:180–184

    Article  CAS  PubMed  Google Scholar 

  11. Fox J, Lowe SH, Conklin RL, Nemeth EF (1999) The calcimimetic NPS R-568 decreases plasma PTH in rats with mild and severe renal or dietary secondary hyperparathyroidism. Endocrine 10:97–103

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez ME, Almaden Y, Canadillas S, Canalejo A, Siendones E, Lopez I, Aguilera-Tejero E, Martin D, Rodriguez M (2007) The calcimimetic R-568 increases vitamin D receptor expression in rat parathyroid glands. Am J Physiol Renal Physiol 292:F1390–1395

    Article  CAS  PubMed  Google Scholar 

  13. Rybczynska A, Boblewski K, Lehmann A, Orlewska C, Foks H (2006) Pharmacological activity of calcimimetic NPS R-568 administered intravenously in rats: dose dependency. Pharmacol Rep 58:533–539

    CAS  PubMed  Google Scholar 

  14. Nemeth EF, Steffey ME, Hammerland LG, Hung BC, Van Wagenen BC, DelMar EG, Balandrin MF (1998) Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA 95:4040–4045

    Article  CAS  PubMed  Google Scholar 

  15. Frazao JM, Martins P, Coburn JW (2002) The calcimimetic agents: perspectives for treatment. Kidney Int Suppl 14:9–154

    Google Scholar 

  16. Goodman WG, Frazao JM, Goodkin DA, Turner SA, Liu W, Coburn JW (2000) A calcimimetic agent lowers plasma parathyroid hormone levels in patients with secondary hyperparathyroidism. Kidney Int 58:436–445

    Article  CAS  PubMed  Google Scholar 

  17. Nemeth EF, Heaton WH, Miller M, Fox J, Balandrin MF, Van Wagenen BC, Colloton M, Karbon W, Scherrer J, Shatzen E, Rishton G, Scully S, Qi M, Harris R, Lacey D, Martin D (2004) Pharmacodynamics of the type II calcimimetic compound cinacalcet HCl. J Pharmacol Exp Ther 308:627–635

    Article  CAS  PubMed  Google Scholar 

  18. Block GA, Martin KJ, de Francisco AL, Turner SA, Avram MM, Suranyi MG, Hercz G, Cunningham J, Abu-Alfa AK, Messa P, Coyne DW, Locatelli F, Cohen RM, Evenepoel P, Moe SM, Fournier A, Braun J, McCary LC, Zani VJ, Olson KA, Drueke TB, Goodman WG (2004) Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 350:1516–1525

    Article  CAS  PubMed  Google Scholar 

  19. Lindberg JS, Culleton B, Wong G, Borah MF, Clark RV, Shapiro WB, Roger SD, Husserl FE, Klassen PS, Guo MD, Albizem MB, Coburn JW (2005) Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double-blind, multicenter study. J Am Soc Nephrol 16:800–807

    Article  CAS  PubMed  Google Scholar 

  20. Moe SM, Cunningham J, Bommer J, Adler S, Rosansky SJ, Urena-Torres P, Albizem MB, Guo MD, Zani VJ, Goodman WG, Sprague SM (2005) Long-term treatment of secondary hyperparathyroidism with the calcimimetic cinacalcet HCl. Nephrol Dial Transplant 20:2186–2193

    Article  CAS  PubMed  Google Scholar 

  21. Hu J, Jiang J, Costanzi S, Thomas C, Yang W, Feyen JH, Jacobson KA, Spiegel AM (2006) A missense mutation in the seven-transmembrane domain of the human Ca2+ receptor converts a negative allosteric modulator into a positive allosteric modulator. J Biol Chem 281:21558–21565

    Article  CAS  PubMed  Google Scholar 

  22. Miedlich SU, Gama L, Seuwen K, Wolf RM, Breitwieser GE (2004) Homology modeling of the transmembrane domain of the human calcium sensing receptor and localization of an allosteric binding site. J Biol Chem 279:7254–7263

    Article  CAS  PubMed  Google Scholar 

  23. Petrel C, Kessler A, Dauban P, Dodd RH, Rognan D, Ruat M (2004) Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem 279:18990–18997

    Article  CAS  PubMed  Google Scholar 

  24. Hu J, Reyes-Cruz G, Chen W, Jacobson KA, Spiegel AM (2002) Identification of acidic residues in the extracellular loops of the seven-transmembrane domain of the human Ca2+ receptor critical for response to Ca2+ and a positive allosteric modulator. J Biol Chem 277:46622–46631

    Article  CAS  PubMed  Google Scholar 

  25. Cetani F, Pinchera A, Pardi E, Cianferotti L, Vignali E, Picone A, Miccoli P, Viacava P, Marcocci C (1999) No evidence for mutations in the calcium-sensing receptor gene in sporadic parathyroid adenomas. J Bone Miner Res 14:878–882

    Article  CAS  PubMed  Google Scholar 

  26. Ke SH, Madison EL (1997) Rapid and efficient site-directed mutagenesis by single-tube “megaprimer” PCR method. Nucleic Acids Res 25:3371–3372

    Article  CAS  PubMed  Google Scholar 

  27. Sambrook J, Fistch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  28. Brown AJ, Ritter CS, Finch JL, Slatopolsky EA (1999) Decreased calcium-sensing receptor expression in hyperplastic parathyroid glands of uremic rats: role of dietary phosphate. Kidney Int 55:1284–1292

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalez-Suarez I, Naves M, Diaz-Corte C, Fernandez-Martin JL, Menendez-Rodriguez P, Cannata-Andia JB (2003) Effect of aluminium on calcium-sensing receptor expression, proliferation, and apoptosis of parathyroid glands from rats with chronic renal failure. Kidney Int Suppl 3:9–43

    Google Scholar 

  30. Schmid I, Uittenbogaart CH, Keld B, Giorgi JV (1994) A rapid method for measuring apoptosis and dual-color immunofluorescence by single laser flow cytometry. J Immunol Methods 170:145–157

    Article  CAS  PubMed  Google Scholar 

  31. Miedlich S, Gama L, Breitwieser GE (2002) Calcium sensing receptor activation by a calcimimetic suggests a link between cooperativity and intracellular calcium oscillations. J Biol Chem 277:49691–49699

    Article  CAS  PubMed  Google Scholar 

  32. Ray K, Fan GF, Goldsmith PK, Spiegel AM (1997) The carboxyl terminus of the human calcium receptor. Requirements for cell-surface expression and signal transduction. J Biol Chem 272:31355–31361

    Article  CAS  PubMed  Google Scholar 

  33. Jensen AA, Spalding TA, Burstein ES, Sheppard PO, O’Hara PJ, Brann MR, Krogsgaard-Larsen P, Brauner-Osborne H (2000) Functional importance of the Ala(116)-Pro(136) region in the calcium-sensing receptor. Constitutive activity and inverse agonism in a family C G-protein-coupled receptor. J Biol Chem 275:29547–29555

    Article  CAS  PubMed  Google Scholar 

  34. Hu J, Mora S, Colussi G, Proverbio MC, Jones KA, Bolzoni L, De Ferrari ME, Civati G, Spiegel AM (2002) Autosomal dominant hypocalcemia caused by a novel mutation in the loop 2 region of the human calcium receptor extracellular domain. J Bone Miner Res 17:1461–1469

    Article  CAS  PubMed  Google Scholar 

  35. Hauache OM, Hu J, Ray K, Xie R, Jacobson KA, Spiegel AM (2000) Effects of a calcimimetic compound and naturally activating mutations on the human Ca2+ receptor and on Ca2+ receptor/metabotropic glutamate chimeric receptors. Endocrinology 141:4156–4163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study received support from Amgen, Inc., and from ISCIII-Retic-RD06, REDinREN (16/06), and FIS 06/0646. D. A.-H. and I. G.-S. were supported by ISCIII-FIS (BEFI 03/00099 and 02/9024). I. S. was supported by ISCIII (FIS 00/3161). The authors thank William W. Stark, Jr., PhD (Amgen, Inc.), for editorial assistance with the manuscript and Natalia Carrillo-López and Pablo Roman-García for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge B. Cannata-Andía.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez-Hernández, D., González-Suárez, I., Fernández-Martín, J.L. et al. Residue 826 in the Calcium-Sensing Receptor Is Implicated in the Response to Calcium and to R-568 Calcimimetic Compound. Calcif Tissue Int 86, 227–233 (2010). https://doi.org/10.1007/s00223-009-9298-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9298-7

Keywords

Navigation