Skip to main content

Advertisement

Log in

Bone Turnover and the Osteoprotegerin–RANKL Pathway in Tumor-Induced Osteomalacia: A Longitudinal Study of Five Cases

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

To evaluate serum levels of osteoprotegerin (OPG), soluble receptor activator of the nuclear factor-κB (RANKL), and their relationship with FGF-23, lumbar bone mineral density (BMD), and bone turnover markers, five patients with tumor-induced osteomalacia (TIO) and 40 healthy controls were studied. TIO patients were followed for 360 days after surgical removal of underlying tumor (n = 2) or beginning of therapy with phosphate and calcitriol when surgical treatment was impossible (n = 3). At diagnosis, TIO patients had higher levels of FGF-23 and bone-specific alkaline phosphatase (bALP) and lower levels of cathepsin K (CathK), RANKL, and RANKL/OPG ratio compared to controls. During the follow-up, FGF-23 decreased significantly only in patients who underwent a surgical excision, while phosphate and BMD increased in all patients. The increases in BMD, phosphate, and renal phosphate reabsorption rate were directly related. In the first 60 days of follow-up, we observed a prolonged inhibition of RANKL, CathK, and bone resorption markers associated with a persistence of TIO symptoms and an increase in bALP. From day 60, levels of bone turnover markers returned progressively within the normal range and a clinical remission was observed. The inhibition of the RANKL/OPG pathway and the uncoupling of bone formation and resorption observed in patients with active TIO may be a compensatory mechanism, attempting to reduce worsening of osteomalacia. The BMD increase during TIO treatment is related to the improvement of phosphate rather than FGF-23 levels. A “hungry bone”-like syndrome was observed after surgical or pharmacological treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Drezner MK (2001) Tumor-induced osteomalacia. Rev Endocr Metab Disord 2:175–186

    Article  PubMed  CAS  Google Scholar 

  2. Jan de Beur SM (2005) Tumor-induced osteomalacia. JAMA 294:1260–1267

    Article  PubMed  Google Scholar 

  3. White KE, Larsson TE, Econs MJ (2006) The roles of specific genes implicated as circulating factors involved in normal and disordered phosphate homeostasis: frizzled related protein-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor 23. Endocr Rev 27:221–241

    Article  PubMed  CAS  Google Scholar 

  4. Reyes-Mùgica M, Arnsmeier SL, Backeljauw PF, Persing J, Ellis B, Carpenter TO (2000) Phosphaturic mesenchymal tumor induced rickets. Pediatr Dev Pathol 3:61–69

    Article  PubMed  Google Scholar 

  5. Jan de Beur SM (2006) Tumor-induced osteomalacia. In: American Society for Bone and Mineral Research (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, pp 345–351

  6. Folpe AL, Fanburg-Smith JC, Billings SD, Bisceglia M, Bertoni F, Cho JY, Econs MJ, Inwards CY, Jan de Beur SM, Mentzel T, Montgomery E, Michal M, Miettinen M, Mills SE, Reith JD, O’Connell JX, Rosenberg AE, Rubin BP, Sweet DE, Vinh TN, Wold LE, Wehrli BM, White KE, Zaino RJ, Weiss SW (2004) Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol 28:1–30

    Article  PubMed  Google Scholar 

  7. Weber TJ, Liu S, Indridason OS, Quarles LD (2003) Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res 18:1227–1234

    Article  PubMed  CAS  Google Scholar 

  8. Fukumoto S, Yamashita T (2007) FGF23 is a hormone-regulating phosphate metabolism-unique biological characteristics of FGF23. Bone 40:1190–1195

    Article  PubMed  CAS  Google Scholar 

  9. Rendina D, Mossetti G, De Filippo G, Cioffi M, Strazzullo P (2006) Fibroblast growth factor 23 is increased in calcium nephrolithiasis with hypophosphataemia and renal phosphate leak. J Clin Endocrinol Metab 91:959–963

    Article  PubMed  CAS  Google Scholar 

  10. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98:6500–6505

    Article  PubMed  CAS  Google Scholar 

  11. Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656–1663

    Article  PubMed  CAS  Google Scholar 

  12. Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355

    Article  PubMed  CAS  Google Scholar 

  13. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  PubMed  CAS  Google Scholar 

  14. Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D (2004) The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 15:457–475

    Article  PubMed  CAS  Google Scholar 

  15. Siener R, Hesse A (2002) The effects of different diets on urine composition and the risk of calcium oxalate crystallisation in healthy subjects. Eur Urol 42:289–296

    Article  PubMed  Google Scholar 

  16. Tiselius HG, Ackermann D, Alken P, Buck C, Conort P, Gallucci M (2001) Guidelines on urolithiasis. Eur Urol 40:362–371

    Article  PubMed  CAS  Google Scholar 

  17. Walton RJ, Bijvoet OL (1975) Nomogram for derivation of renal threshold phosphate concentration. Lancet 2:309–310

    Article  PubMed  CAS  Google Scholar 

  18. Imel EA, Peacock M, Pitukcheewanont P, Heller HJ, Ward LM, Shulman D, Kassem M, Rackoff P, Zimering M, Dalkin A, Drobny E, Colussi G, Shaker JL, Hoogendoorn EH, Hui SL, Econs MJ (2006) Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia. J Clin Endocrinol Metab 91:2055–2061

    Article  PubMed  CAS  Google Scholar 

  19. Mossetti G, Rendina D, De Filippo G, Viceconti R, Di Domenico G, Cioffi M, Postiglione L, Nunziata V (2005) Interleukin-6 and osteoprotegerin systems in Paget’s disease of bone: relationship to risedronate treatment. Bone 36:549–554

    Article  PubMed  CAS  Google Scholar 

  20. Kiel D (1995) Assessing vertebral fractures. National Osteoporosis Foundation Working Group on Vertebral Fractures. J Bone Miner Res 10:518–523

    Article  PubMed  CAS  Google Scholar 

  21. Tong D, Gillick L, Hendrickson FR (1982) The palliation of symptomatic osseous metastases: final results of the Study by the Radiation Therapy Oncology Group. Cancer 50:893–899

    Article  PubMed  CAS  Google Scholar 

  22. Kendall FP, McCreary EK, Provance PG (1993) Muscles—testing and function with posture and pain, 4th edn. Lippincott, Williams, and Wilkins, Baltimore

    Google Scholar 

  23. Seibel M (1996) Neuromuscular examination. In: Valmassy RL (ed) Clinical biomechanics of the lower extremities, 1st edn. Mosby, St. Louis, pp 207–221

    Google Scholar 

  24. Henriksen K, Tanko LB, Qvist P, Delmas PD, Christiansen C, Karsdal MA (2007) Assessment of osteoclast number and function: application in the development of new and improved treatment modalities for bone diseases. Osteoporos Int 18:681–685

    Article  PubMed  CAS  Google Scholar 

  25. Ueland T, Bollerslev J, Godang K, Müller F, Frøland SS, Aukrust P (2001) Increased serum osteoprotegerin in disorders characterized by persistent immune activation or glucocorticoid excess—possible role in bone homeostasis. Eur J Endocrinol 145:685–690

    Article  PubMed  CAS  Google Scholar 

  26. Nawrot-Wawrzyniak K, Varga F, Nader A, Roschger P, Sieghart S, Zwettler E, Roetzer KM, Lang S, Weinkamer R, Klaushofer K, Fratzl-Zelman N (2009) Effects of tumor-induced osteomalacia on the bone mineralization process. Calcif Tissue Int 84:313–323

    Article  PubMed  CAS  Google Scholar 

  27. Umphrey LG, Whitaker MD, Bosch EP, Cook CB (2007) Clinical and bone density outcomes of tumor-induced osteomalacia after treatment. Endocr Pract 13:458–462

    PubMed  Google Scholar 

  28. Sitara D, Kim S, Razzaque MS, Bergwitz C, Taguchi T, Schuler C, Erben RG, Lanske B (2008) Genetic evidence of serum phosphate-independent functions of FGF-23 on bone. PLoS Genet 4:e1000154

    Article  PubMed  CAS  Google Scholar 

  29. Hayashibara T, Hiraga T, Sugita A, Wang L, Hata K, Ooshima T, Yoneda T (2007) Regulation of osteoclast differentiation and function by phosphate: potential role of osteoclasts in the skeletal abnormalities in hypophosphatemic conditions. J Bone Miner Res 22:1743–1751

    Article  PubMed  CAS  Google Scholar 

  30. Mozar A, Haren N, Chasseraud M, Louvet L, Mazière C, Wattel A, Mentaverri R, Morlière P, Kamel S, Brazier M, Mazière JC, Massy ZA (2008) High extracellular inorganic phosphate concentration inhibits RANK-RANKL signaling in osteoclast-like cel1s. J Cell Physiol 275:41–54

    Google Scholar 

  31. Yates AJ, Oreffo RO, Mayor K, Mundy GR (1991) Inhibition of bone resorption by inorganic phosphate concentration is mediated by both reduced osteoclast formation and decreased activity of mature osteoclasts. J Bone Miner Res 6:473–478

    Article  PubMed  CAS  Google Scholar 

  32. Fitzpatrick LA (2002) The hypocalcemic states. In: Coe FL, Favus MJ (eds) Disorders of bone and mineral metabolism. Lippincott Williams & Wilkins, Philadelphia, pp 568–588

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to Pasquale and Italiacornelia Rendina for their statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Mossetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rendina, D., De Filippo, G., Tauchmanovà, L. et al. Bone Turnover and the Osteoprotegerin–RANKL Pathway in Tumor-Induced Osteomalacia: A Longitudinal Study of Five Cases. Calcif Tissue Int 85, 293–300 (2009). https://doi.org/10.1007/s00223-009-9275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9275-1

Keywords

Navigation