Abstract
X-linked hypophosphatemia (XLH) is characterized by rickets and osteomalacia as a result of an inactivating mutation of the PHEX (phosphate-regulating gene with homology to endopeptidases on the X chromosome) gene. PHEX encodes an endopeptidase that, when inactivated, results in elevated circulating levels of FGF-23, a novel phosphate-regulating hormone (a phosphatonin), thereby resulting in increased phosphate excretion and impaired bone mineralization. A generalized and severe mineralizing enthesopathy in patients with XLH was first reported in 1985; we likewise report a survey in which we found evidence of enthesopathy in fibrocartilaginous insertion sites, as well as osteophyte formation, in the majority of patients. Nonetheless, there has been very little focus on the progression and pathogenesis underlying the paradoxical heterotopic calcification of tendon and ligament insertion sites. Such studies have been hampered by lack of a model of mineralizing enthesopathy. We therefore characterized the involvement of the most frequently targeted fibrocartilaginous tendon insertion sites in Hyp mice, a murine model of the XLH mutation that phenocopies the human syndrome in every detail including hypophosphatemia and elevated FGF-23. Histological examination of the affected entheses revealed that mineralizing insertion sites, while thought to involve bone spur formation, were not due to bone-forming osteoblasts but instead to a significant expansion of mineralizing fibrocartilage. Our finding that enthesis fibrocartilage cells specifically express fibroblast growth factor receptor 3 (FGFR3)/Klotho suggests that the high circulating levels of FGF-23, characteristic of XLH and Hyp mice, may be part of the biochemical milieu that underlies the expansion of mineralizing enthesis fibrocartilage.
Similar content being viewed by others
References
White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ (2001) Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 60:2079–2086
Fukumoto S, Yamashita T (2002) Fibroblast growth factor-23 is the phosphaturic factor in tumor-induced osteomalacia and may be phosphatonin. Curr Opin Nephrol Hypertens 11:385–389
Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R, Schiavi SC (2001) FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 284:977–981
Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315
Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Juppner H, Strom TM (2006) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38:1248–1250
Polisson RP, Martinez S, Khoury M, Harrell RM, Lyles KW, Friedman N, Harrelson JM, Reisner E, Drezner MK (1985) Calcification of entheses associated with X-linked hypophosphatemic osteomalacia. N Engl J Med 313:1–6
Reid IR, Hardy DC, Murphy WA, Teitelbaum SL, Bergfeld MA, Whyte MP (1989) X-linked hypophosphatemia: a clinical, biochemical, and histopathologic assessment of morbidity in adults. Medicine (Baltimore) 68:336–352
Benjamin M, Kumai T, Milz S, Boszczyk BM, Boszczyk AA, Ralphs JR (2002) The skeletal attachment of tendons–tendon “entheses”. Comp Biochem Physiol A Mol Integr Physiol 133:931–945
Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S (2006) Where tendons and ligaments meet bone: attachment sites (“entheses”) in relation to exercise and/or mechanical load. J Anat 208:471–490
Ramonda R, Sfriso P, Podswiadek M, Oliviero F, Valvason C, Punzi L (2005) The enthesopathy of vitamin D-resistant osteomalacia in adults [in Italian]. Reumatismo 57:52–56
Benjamin M, Tyers RN, Ralphs JR (1991) Age-related changes in tendon fibrocartilage. J Anat 179:127–136
Yost JH, Spencer-Green G, Brown LA (1994) Radiologic vignette, X-linked hypophosphatemia (familial vitamin D-resistant rickets). Arthritis Rheum 37:435–438
Benjamin M, Evans EJ (1990) Fibrocartilage. J Anat 171:1–15
Benjamin M, Moriggl B, Brenner E, Emery P, McGonagle D, Redman S (2004) The “enthesis organ” concept: why enthesopathies may not present as focal insertional disorders. Arthritis Rheum 50:3306–3313
de Bernard B, Bianco P, Bonucci E, Costantini M, Lunazzi GC, Martinuzzi P, Modricky C, Moro L, Panfili E, Pollesello P et al (1986) Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca2+-binding glycoprotein. J Cell Biol 103:1615–1623
Fujioka H, Wang GJ, Mizuno K, Balian G, Hurwitz SR (1997) Changes in the expression of type-X collagen in the fibrocartilage of rat Achilles tendon attachment during development. J Orthop Res 15:675–681
Rufai A, Ralphs JR, Benjamin M (1995) Structure and histopathology of the insertional region of the human Achilles tendon. J Orthop Res 13:585–593
Liu S, Vierthaler L, Tang W, Zhou J, Quarles LD (2008) FGFR3 and FGFR4 do not mediate renal effects of FGF-23. J Am Soc Nephrol 19:2342–2350
Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF-23. Nature 444:770–774
Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123
Rufai A, Benjamin M, Ralphs JR (1992) Development and ageing of phenotypically distinct fibrocartilages associated with the rat Achilles tendon. Anat Embryol (Berl) 186:611–618
Benjamin M, Toumi H, Suzuki D, Hayashi K, McGonagle D (2009) Evidence for a distinctive pattern of bone formation in enthesophytes. Ann Rheum Dis 68:1003–1010
Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104
Broadus AE, Macica C, Chen X (2007) The PTHrP functional domain is at the gates of endochondral bones. Ann N Y Acad Sci 1116:65–81
Jacenko O, Chan D, Franklin A, Ito S, Underhill CB, Bateman JF, Campbell MR (2001) A dominant interference collagen X mutation disrupts hypertrophic chondrocyte pericellular matrix and glycosaminoglycan and proteoglycan distribution in transgenic mice. Am J Pathol 159:2257–2269
Kwan AP, Cummings CE, Chapman JA, Grant ME (1991) Macromolecular organization of chicken type X collagen in vitro. J Cell Biol 114:597–604
Luckman SP, Rees E, Kwan AP (2003) Partial characterization of cell-type X collagen interactions. Biochem J 372:485–493
Kim HJ, Kirsch T (2008) Collagen/annexin V interactions regulate chondrocyte mineralization. J Biol Chem 283:10310–10317
Benjamin M, Ralphs JR (1998) Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat 193:481–494
Benjamin M, Ralphs JR (2001) Entheses—the bony attachments of tendons and ligaments. Ital J Anat Embryol 106:151–157
Benjamin M, Rufai A, Ralphs JR (2000) The mechanism of formation of bony spurs (enthesophytes) in the Achilles tendon. Arthritis Rheum 43:576–583
Camacho NP, Rimnac CM, Meyer RA Jr, Doty S, Boskey AL (1995) Effect of abnormal mineralization on the mechanical behavior of X-linked hypophosphatemic mice femora. Bone 17:271–278
Meyer RA Jr, Meyer MH, Gray RW, Bruns ME (1995) Femoral abnormalities and vitamin D metabolism in X-linked hypophosphatemic (Hyp and Gy) mice. J Orthop Res 13:30–40
Shaw HM, Benjamin M (2007) Structure–function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports 17:303–315
Evanko SP, Vogel KG (1993) Proteoglycan synthesis in fetal tendon is differentially regulated by cyclic compression in vitro. Arch Biochem Biophys 307:153–164
Koob TJ, Clark PE, Hernandez DJ, Thurmond FA, Vogel KG (1992) Compression loading in vitro regulates proteoglycan synthesis by tendon fibrocartilage. Arch Biochem Biophys 298:303–312
Thomopoulos S, Kim HM, Rothermich SY, Biederstadt C, Das R, Galatz LM (2007) Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J Orthop Res 25:1154–1163
Argiro L, Desbarats M, Glorieux FH, Ecarot B (2001) Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Genomics 74:342–351
Rowe PS, Kumagai Y, Gutierrez G, Garrett IR, Blacher R, Rosen D, Cundy J, Navvab S, Chen D, Drezner MK, Quarles LD, Mundy GR (2004) MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone 34:303–319
Addison WN, Nakano Y, Loisel T, Crine P, McKee MD (2008) MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: an inhibition regulated by PHEX cleavage of ASARM. J Bone Miner Res 23:1638–1649
Rowe PS, Garrett IR, Schwarz PM, Carnes DL, Lafer EM, Mundy GR, Gutierrez GE (2005) Surface plasmon resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone 36:33–46
Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 12:390–397
Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84:911–921
Eswarakumar VP, Schlessinger J (2007) Skeletal overgrowth is mediated by deficiency in a specific isoform of fibroblast growth factor receptor 3. Proc Natl Acad Sci USA 104:3937–3942
Davidson D, Blanc A, Filion D, Wang H, Plut P, Pfeffer G, Buschmann MD, Henderson JE (2005) Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J Biol Chem 280:20509–20515
Dailey L, Ambrosetti D, Mansukhani A, Basilico C (2005) Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16:233–247
Iwata T, Chen L, Li C, Ovchinnikov DA, Behringer RR, Francomano CA, Deng CX (2000) A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet 9:1603–1613
Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16:139–149
Gao J, Messner K, Ralphs JR, Benjamin M (1996) An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat Embryol (Berl) 194:399–406
Acknowledgement
We thank Nancy Troiano for technical assistance. We also thank the subjects participating in our clinical research protocols for their generous donation of time and effort, allowing the clinical characterization of features of the disease described here. Funding was provided by the NIH/NIAMSD (P50-AR054086-02) and the NIH/NIDDK (R01DK62515-26).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liang, G., Katz, L.D., Insogna, K.L. et al. Survey of the Enthesopathy of X-Linked Hypophosphatemia and Its Characterization in Hyp Mice. Calcif Tissue Int 85, 235–246 (2009). https://doi.org/10.1007/s00223-009-9270-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00223-009-9270-6