Skip to main content

Advertisement

Log in

Survey of the Enthesopathy of X-Linked Hypophosphatemia and Its Characterization in Hyp Mice

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

X-linked hypophosphatemia (XLH) is characterized by rickets and osteomalacia as a result of an inactivating mutation of the PHEX (phosphate-regulating gene with homology to endopeptidases on the X chromosome) gene. PHEX encodes an endopeptidase that, when inactivated, results in elevated circulating levels of FGF-23, a novel phosphate-regulating hormone (a phosphatonin), thereby resulting in increased phosphate excretion and impaired bone mineralization. A generalized and severe mineralizing enthesopathy in patients with XLH was first reported in 1985; we likewise report a survey in which we found evidence of enthesopathy in fibrocartilaginous insertion sites, as well as osteophyte formation, in the majority of patients. Nonetheless, there has been very little focus on the progression and pathogenesis underlying the paradoxical heterotopic calcification of tendon and ligament insertion sites. Such studies have been hampered by lack of a model of mineralizing enthesopathy. We therefore characterized the involvement of the most frequently targeted fibrocartilaginous tendon insertion sites in Hyp mice, a murine model of the XLH mutation that phenocopies the human syndrome in every detail including hypophosphatemia and elevated FGF-23. Histological examination of the affected entheses revealed that mineralizing insertion sites, while thought to involve bone spur formation, were not due to bone-forming osteoblasts but instead to a significant expansion of mineralizing fibrocartilage. Our finding that enthesis fibrocartilage cells specifically express fibroblast growth factor receptor 3 (FGFR3)/Klotho suggests that the high circulating levels of FGF-23, characteristic of XLH and Hyp mice, may be part of the biochemical milieu that underlies the expansion of mineralizing enthesis fibrocartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ (2001) Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 60:2079–2086

    Article  PubMed  CAS  Google Scholar 

  2. Fukumoto S, Yamashita T (2002) Fibroblast growth factor-23 is the phosphaturic factor in tumor-induced osteomalacia and may be phosphatonin. Curr Opin Nephrol Hypertens 11:385–389

    Article  PubMed  Google Scholar 

  3. Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R, Schiavi SC (2001) FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 284:977–981

    Article  PubMed  CAS  Google Scholar 

  4. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315

    Article  PubMed  CAS  Google Scholar 

  5. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Juppner H, Strom TM (2006) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38:1248–1250

    Article  PubMed  CAS  Google Scholar 

  6. Polisson RP, Martinez S, Khoury M, Harrell RM, Lyles KW, Friedman N, Harrelson JM, Reisner E, Drezner MK (1985) Calcification of entheses associated with X-linked hypophosphatemic osteomalacia. N Engl J Med 313:1–6

    Article  PubMed  CAS  Google Scholar 

  7. Reid IR, Hardy DC, Murphy WA, Teitelbaum SL, Bergfeld MA, Whyte MP (1989) X-linked hypophosphatemia: a clinical, biochemical, and histopathologic assessment of morbidity in adults. Medicine (Baltimore) 68:336–352

    CAS  Google Scholar 

  8. Benjamin M, Kumai T, Milz S, Boszczyk BM, Boszczyk AA, Ralphs JR (2002) The skeletal attachment of tendons–tendon “entheses”. Comp Biochem Physiol A Mol Integr Physiol 133:931–945

    Article  PubMed  CAS  Google Scholar 

  9. Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S (2006) Where tendons and ligaments meet bone: attachment sites (“entheses”) in relation to exercise and/or mechanical load. J Anat 208:471–490

    Article  PubMed  CAS  Google Scholar 

  10. Ramonda R, Sfriso P, Podswiadek M, Oliviero F, Valvason C, Punzi L (2005) The enthesopathy of vitamin D-resistant osteomalacia in adults [in Italian]. Reumatismo 57:52–56

    PubMed  CAS  Google Scholar 

  11. Benjamin M, Tyers RN, Ralphs JR (1991) Age-related changes in tendon fibrocartilage. J Anat 179:127–136

    PubMed  CAS  Google Scholar 

  12. Yost JH, Spencer-Green G, Brown LA (1994) Radiologic vignette, X-linked hypophosphatemia (familial vitamin D-resistant rickets). Arthritis Rheum 37:435–438

    Article  PubMed  CAS  Google Scholar 

  13. Benjamin M, Evans EJ (1990) Fibrocartilage. J Anat 171:1–15

    PubMed  CAS  Google Scholar 

  14. Benjamin M, Moriggl B, Brenner E, Emery P, McGonagle D, Redman S (2004) The “enthesis organ” concept: why enthesopathies may not present as focal insertional disorders. Arthritis Rheum 50:3306–3313

    Article  PubMed  CAS  Google Scholar 

  15. de Bernard B, Bianco P, Bonucci E, Costantini M, Lunazzi GC, Martinuzzi P, Modricky C, Moro L, Panfili E, Pollesello P et al (1986) Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca2+-binding glycoprotein. J Cell Biol 103:1615–1623

    Article  PubMed  Google Scholar 

  16. Fujioka H, Wang GJ, Mizuno K, Balian G, Hurwitz SR (1997) Changes in the expression of type-X collagen in the fibrocartilage of rat Achilles tendon attachment during development. J Orthop Res 15:675–681

    Article  PubMed  CAS  Google Scholar 

  17. Rufai A, Ralphs JR, Benjamin M (1995) Structure and histopathology of the insertional region of the human Achilles tendon. J Orthop Res 13:585–593

    Article  PubMed  CAS  Google Scholar 

  18. Liu S, Vierthaler L, Tang W, Zhou J, Quarles LD (2008) FGFR3 and FGFR4 do not mediate renal effects of FGF-23. J Am Soc Nephrol 19:2342–2350

    Article  PubMed  CAS  Google Scholar 

  19. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF-23. Nature 444:770–774

    Article  PubMed  CAS  Google Scholar 

  20. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123

    Article  PubMed  CAS  Google Scholar 

  21. Rufai A, Benjamin M, Ralphs JR (1992) Development and ageing of phenotypically distinct fibrocartilages associated with the rat Achilles tendon. Anat Embryol (Berl) 186:611–618

    CAS  Google Scholar 

  22. Benjamin M, Toumi H, Suzuki D, Hayashi K, McGonagle D (2009) Evidence for a distinctive pattern of bone formation in enthesophytes. Ann Rheum Dis 68:1003–1010

    Article  PubMed  CAS  Google Scholar 

  23. Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104

    Article  PubMed  CAS  Google Scholar 

  24. Broadus AE, Macica C, Chen X (2007) The PTHrP functional domain is at the gates of endochondral bones. Ann N Y Acad Sci 1116:65–81

    Article  PubMed  CAS  Google Scholar 

  25. Jacenko O, Chan D, Franklin A, Ito S, Underhill CB, Bateman JF, Campbell MR (2001) A dominant interference collagen X mutation disrupts hypertrophic chondrocyte pericellular matrix and glycosaminoglycan and proteoglycan distribution in transgenic mice. Am J Pathol 159:2257–2269

    PubMed  CAS  Google Scholar 

  26. Kwan AP, Cummings CE, Chapman JA, Grant ME (1991) Macromolecular organization of chicken type X collagen in vitro. J Cell Biol 114:597–604

    Article  PubMed  CAS  Google Scholar 

  27. Luckman SP, Rees E, Kwan AP (2003) Partial characterization of cell-type X collagen interactions. Biochem J 372:485–493

    Article  PubMed  CAS  Google Scholar 

  28. Kim HJ, Kirsch T (2008) Collagen/annexin V interactions regulate chondrocyte mineralization. J Biol Chem 283:10310–10317

    Article  PubMed  CAS  Google Scholar 

  29. Benjamin M, Ralphs JR (1998) Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat 193:481–494

    Article  PubMed  Google Scholar 

  30. Benjamin M, Ralphs JR (2001) Entheses—the bony attachments of tendons and ligaments. Ital J Anat Embryol 106:151–157

    PubMed  CAS  Google Scholar 

  31. Benjamin M, Rufai A, Ralphs JR (2000) The mechanism of formation of bony spurs (enthesophytes) in the Achilles tendon. Arthritis Rheum 43:576–583

    Article  PubMed  CAS  Google Scholar 

  32. Camacho NP, Rimnac CM, Meyer RA Jr, Doty S, Boskey AL (1995) Effect of abnormal mineralization on the mechanical behavior of X-linked hypophosphatemic mice femora. Bone 17:271–278

    Article  PubMed  CAS  Google Scholar 

  33. Meyer RA Jr, Meyer MH, Gray RW, Bruns ME (1995) Femoral abnormalities and vitamin D metabolism in X-linked hypophosphatemic (Hyp and Gy) mice. J Orthop Res 13:30–40

    Article  PubMed  CAS  Google Scholar 

  34. Shaw HM, Benjamin M (2007) Structure–function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports 17:303–315

    PubMed  CAS  Google Scholar 

  35. Evanko SP, Vogel KG (1993) Proteoglycan synthesis in fetal tendon is differentially regulated by cyclic compression in vitro. Arch Biochem Biophys 307:153–164

    Article  PubMed  CAS  Google Scholar 

  36. Koob TJ, Clark PE, Hernandez DJ, Thurmond FA, Vogel KG (1992) Compression loading in vitro regulates proteoglycan synthesis by tendon fibrocartilage. Arch Biochem Biophys 298:303–312

    Article  PubMed  CAS  Google Scholar 

  37. Thomopoulos S, Kim HM, Rothermich SY, Biederstadt C, Das R, Galatz LM (2007) Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J Orthop Res 25:1154–1163

    Article  PubMed  Google Scholar 

  38. Argiro L, Desbarats M, Glorieux FH, Ecarot B (2001) Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Genomics 74:342–351

    Article  PubMed  CAS  Google Scholar 

  39. Rowe PS, Kumagai Y, Gutierrez G, Garrett IR, Blacher R, Rosen D, Cundy J, Navvab S, Chen D, Drezner MK, Quarles LD, Mundy GR (2004) MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone 34:303–319

    Article  PubMed  CAS  Google Scholar 

  40. Addison WN, Nakano Y, Loisel T, Crine P, McKee MD (2008) MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: an inhibition regulated by PHEX cleavage of ASARM. J Bone Miner Res 23:1638–1649

    Article  PubMed  CAS  Google Scholar 

  41. Rowe PS, Garrett IR, Schwarz PM, Carnes DL, Lafer EM, Mundy GR, Gutierrez GE (2005) Surface plasmon resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone 36:33–46

    Article  PubMed  CAS  Google Scholar 

  42. Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 12:390–397

    Article  PubMed  CAS  Google Scholar 

  43. Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84:911–921

    Article  PubMed  CAS  Google Scholar 

  44. Eswarakumar VP, Schlessinger J (2007) Skeletal overgrowth is mediated by deficiency in a specific isoform of fibroblast growth factor receptor 3. Proc Natl Acad Sci USA 104:3937–3942

    Article  PubMed  CAS  Google Scholar 

  45. Davidson D, Blanc A, Filion D, Wang H, Plut P, Pfeffer G, Buschmann MD, Henderson JE (2005) Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J Biol Chem 280:20509–20515

    Article  PubMed  CAS  Google Scholar 

  46. Dailey L, Ambrosetti D, Mansukhani A, Basilico C (2005) Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16:233–247

    Article  PubMed  CAS  Google Scholar 

  47. Iwata T, Chen L, Li C, Ovchinnikov DA, Behringer RR, Francomano CA, Deng CX (2000) A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet 9:1603–1613

    Article  PubMed  CAS  Google Scholar 

  48. Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16:139–149

    Article  PubMed  CAS  Google Scholar 

  49. Gao J, Messner K, Ralphs JR, Benjamin M (1996) An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat Embryol (Berl) 194:399–406

    CAS  Google Scholar 

Download references

Acknowledgement

We thank Nancy Troiano for technical assistance. We also thank the subjects participating in our clinical research protocols for their generous donation of time and effort, allowing the clinical characterization of features of the disease described here. Funding was provided by the NIH/NIAMSD (P50-AR054086-02) and the NIH/NIDDK (R01DK62515-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn M. Macica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, G., Katz, L.D., Insogna, K.L. et al. Survey of the Enthesopathy of X-Linked Hypophosphatemia and Its Characterization in Hyp Mice. Calcif Tissue Int 85, 235–246 (2009). https://doi.org/10.1007/s00223-009-9270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9270-6

Keywords

Navigation