Skip to main content

Advertisement

Log in

The Thyroid Hormone Receptor (TR) β-Selective Agonist GC-1 Inhibits Proliferation But Induces Differentiation and TR β mRNA Expression in Mouse and Rat Osteoblast-Like Cells

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Previous studies showed anabolic effects of GC-1, a triiodothyronine (T3) analogue that is selective for both binding and activation functions of thyroid hormone receptor (TR) β1 over TRα1, on bone tissue in vivo. The aim of this study was to investigate the responsiveness of rat (ROS17/2.8) and mouse (MC3T3-E1) osteoblast-like cells to GC-1. As expected, T3 inhibited cellular proliferation and stimulated mRNA expression of osteocalcin or alkaline phosphatase in both cell lineages. Whereas equimolar doses of T3 and GC-1 equally affected these parameters in ROS17/2.8 cells, the effects of GC-1 were more modest compared to those of T3 in MC3T3-E1 cells. Interestingly, we showed that there is higher expression of TRα1 than TRβ1 mRNA in rat (~20–90%) and mouse (~90–98%) cell lineages and that this difference is even higher in mouse cells, which highlights the importance of TRα1 to bone physiology and may partially explain the modest effects of GC-1 in comparison with T3 in MC3T3-E1 cells. Nevertheless, we showed that TRβ1 mRNA expression increases (~2.8- to 4.3-fold) as osteoblastic cells undergo maturation, suggesting a key role of TRβ1 in mediating T3 effects in the bone forming cells, especially in mature osteoblasts. It is noteworthy that T3 and GC-1 induced TRβ1 mRNA expression to a similar extent in both cell lineages (~2- to 4-fold), indicating that both ligands may modulate the responsiveness of osteoblasts to T3. Taken together, these data show that TRβ selective T3 analogues have the potential to directly induce the differentiation and activity of osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lewinson D, Harel Z, Shenzer P, Silbermann M, Hochberg Z (1989) Effect of thyroid hormone and growth hormone on recovery from hypothyroidism of epiphyseal growth plate cartilage and its adjacent bone. Endocrinology 124:937–945

    PubMed  CAS  Google Scholar 

  2. Stevens DA, Hasserjian RP, Robson H, Siebler T, Shalet SM, Williams GR (2000) Thyroid hormones regulate hypertrophic chondrocyte differentiation and expression of parathyroid hormone-related peptide and its receptor during endochondral bone formation. J Bone Miner Res 15:2431–2442

    Article  PubMed  CAS  Google Scholar 

  3. Allain TJ, McGregor AM (1993) Thyroid hormones and bone. J Endocrinol 139:9–18

    Article  PubMed  CAS  Google Scholar 

  4. Melsen F, Mosekilde L (1977) Morphometric and dynamic studies of bone changes in hyperthyroidism. Acta Pathol Microbiol Scand [A] 85A:141–150

    CAS  Google Scholar 

  5. Lazar MA (1993) Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14:184–193

    PubMed  CAS  Google Scholar 

  6. Brent GA, Moore DD, Larsen PR (1991) Thyroid hormone regulation of gene expression. Annu Rev Physiol 53:17–35

    Article  PubMed  CAS  Google Scholar 

  7. Katz D, Lazar MA (1993) Dominant negative activity of an endogenous thyroid hormone receptor variant (alpha 2) is due to competition for binding sites on target genes. J Biol Chem 268:20904–20910

    PubMed  CAS  Google Scholar 

  8. Chassande O, Fraichard A, Gauthier K, Flamant F, Legrand C, Savatier P, Laudet V, Samarut J (1997) Identification of transcripts initiated from an internal promoter in the c-erbA alpha locus that encode inhibitors of retinoic acid receptor-alpha and triiodothyronine receptor activities. Mol Endocrinol 11:1278–1290

    Article  PubMed  CAS  Google Scholar 

  9. O’Shea PJ, Williams GR (2002) Insight into the physiological actions of thyroid hormone receptors from genetically modified mice. J Endocrinol 175:553–570

    Article  PubMed  CAS  Google Scholar 

  10. Motomura K, Brent GA (1998) Mechanisms of thyroid hormone action. Implications for the clinical manifestation of thyrotoxicosis. Endocrinol Metab Clin North Am 27:1–23

    Article  PubMed  CAS  Google Scholar 

  11. Rizzoli R, Poser J, Burgi U (1986) Nuclear thyroid hormone receptors in cultured bone cells. Metabolism 35:71–74

    Article  PubMed  CAS  Google Scholar 

  12. Sato K, Han DC, Fujii Y, Tsushima T, Shizume K (1987) Thyroid hormone stimulates alkaline phosphatase activity in cultured rat osteoblastic cells (ROS 17/2.8) through 3,5,3′-triiodo-L-thyronine nuclear receptors. Endocrinology 120:1873–1881

    Article  PubMed  CAS  Google Scholar 

  13. LeBron BA, Pekary AE, Mirell C, Hahn TJ, Hershman JM (1989) Thyroid hormone 5’-deiodinase activity, nuclear binding, and effects on mitogenesis in UMR-106 osteoblastic osteosarcoma cells. J Bone Miner Res 4:173–178

    PubMed  CAS  Google Scholar 

  14. Kasono K, Sato K, Han DC, Fujii Y, Tsushima T, Shizume K (1988) Stimulation of alkaline phosphatase activity by thyroid hormone in mouse osteoblast-like cells (MC3T3-E1): a possible mechanism of hyperalkaline phosphatasia in hyperthyroidism. Bone Miner 4:355–363

    PubMed  CAS  Google Scholar 

  15. Allain TJ, Yen PM, Flanagan AM, McGregor AM (1996) The isoform-specific expression of the tri-iodothyronine receptor in osteoblasts and osteoclasts. Eur J Clin Invest 26:418–425

    Article  PubMed  CAS  Google Scholar 

  16. Abu EO, Bord S, Horner A, Chatterjee VK, Compston JE (1997) The expression of thyroid hormone receptors in human bone. Bone 21:137–142

    Article  PubMed  CAS  Google Scholar 

  17. Robson H, Siebler T, Stevens DA, Shalet SM, Williams GR (2000) Thyroid hormone acts directly on growth plate chondrocytes to promote hypertrophic differentiation and inhibit clonal expansion and cell proliferation. Endocrinology 141:3887–3897

    Article  PubMed  CAS  Google Scholar 

  18. Varga F, Rumpler M, Luegmayr E, Fratzl-Zelman N, Glantschnig H, Klaushofer K (1997) Triiodothyronine, a regulator of osteoblastic differentiation: depression of histone H4, attenuation of c-fos/c-jun, and induction of osteocalcin expression. Calcif Tissue Int 61:404–411

    Article  PubMed  CAS  Google Scholar 

  19. Gouveia CH, Schultz JJ, Bianco AC, Brent GA (2001) Thyroid hormone stimulation of osteocalcin gene expression in ROS 17/2.8 cells is mediated by transcriptional and post-transcriptional mechanisms. J Endocrinol 170:667–675

    Article  PubMed  CAS  Google Scholar 

  20. Milne M, Kang MI, Quail JM, Baran DT (1998) Thyroid hormone excess increases insulin-like growth factor I transcripts in bone marrow cell cultures: divergent effects on vertebral and femoral cell cultures. Endocrinology 139:2527–2534

    Article  PubMed  CAS  Google Scholar 

  21. Pereira RC, Jorgetti V, Canalis E (1999) Triiodothyronine induces collagenase-3 and gelatinase B expression in murine osteoblasts. Am J Physiol 277:E496–E504

    PubMed  CAS  Google Scholar 

  22. Williams GR, Bland R, Sheppard MC (1994) Characterization of thyroid hormone (T3) receptors in three osteosarcoma cell lines of distinct osteoblast phenotype: interactions among T3, vitamin D3, and retinoid signaling. Endocrinology 135:2375–2385

    Article  PubMed  CAS  Google Scholar 

  23. Flamant F, Poguet AL, Plateroti M, Chassande O, Gauthier K, Streichenberger N, Mansouri A, Samarut J (2002) Congenital hypothyroid Pax8(−/−) mutant mice can be rescued by inactivating the TRalpha gene. Mol Endocrinol 16:24–32

    Article  PubMed  CAS  Google Scholar 

  24. Fowler PB, McIvor J, Sykes L, Macrae KD (1996) The effect of long-term thyroxine on bone mineral density and serum cholesterol. J R Coll Physicians Lond 30:527–532

    PubMed  CAS  Google Scholar 

  25. Fraichard A, Chassande O, Plateroti M, Roux JP, Trouillas J, Dehay C, Legrand C, Gauthier K, Kedinger M, Malaval L, Rousset B, Samarut J (1997) The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J 16:4412–4420

    Article  PubMed  CAS  Google Scholar 

  26. Gauthier K, Plateroti M, Harvey CB, Williams GR, Weiss RE, Refetoff S, Willott JF, Sundin V, Roux JP, Malaval L, Hara M, Samarut J, Chassande O (2001) Genetic analysis reveals different functions for the products of the thyroid hormone receptor alpha locus. Mol Cell Biol 21:4748–4760

    Article  PubMed  CAS  Google Scholar 

  27. Gothe S, Wang Z, Ng L, Kindblom JM, Barros AC, Ohlsson C, Vennstrom B, Forrest D (1999) Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev 13:1329–1341

    Article  PubMed  CAS  Google Scholar 

  28. Wikstrom L, Johansson C, Salto C, Barlow C, Campos Barros A, Baas F, Forrest D, Thoren P, Vennstrom B (1998) Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J 17:455–461

    Article  PubMed  CAS  Google Scholar 

  29. Johansson C, Vennstrom B, Thoren P (1998) Evidence that decreased heart rate in thyroid hormone receptor-alpha1-deficient mice is an intrinsic defect. Am J Physiol 275:R640–R646

    PubMed  CAS  Google Scholar 

  30. Cheng SY (2005) Thyroid hormone receptor mutations and disease: beyond thyroid hormone resistance. Trends Endocrinol Metab 16:176–182

    Article  PubMed  CAS  Google Scholar 

  31. Refetoff S (2003) The syndrome of resistance to thyroid stimulating hormone. J Chin Med Assoc 66:441–452

    PubMed  Google Scholar 

  32. Chiellini G, Apriletti JW, Yoshihara HA, Baxter JD, Ribeiro RC, Scanlan TS (1998) A high-affinity subtype-selective agonist ligand for the thyroid hormone receptor. Chem Biol 5:299–306

    Article  PubMed  CAS  Google Scholar 

  33. Trost SU, Swanson E, Gloss B, Wang-Iverson DB, Zhang H, Volodarsky T, Grover GJ, Baxter JD, Chiellini G, Scanlan TS, Dillmann WH (2000) The thyroid hormone receptor-beta-selective agonist GC-1 differentially affects plasma lipids and cardiac activity. Endocrinology 141:3057–3064

    Article  PubMed  CAS  Google Scholar 

  34. Ribeiro MO, Carvalho SD, Schultz JJ, Chiellini G, Scanlan TS, Bianco AC, Brent GA (2001) Thyroid hormone-sympathetic interaction and adaptive thermogenesis are thyroid hormone receptor isoform-specific. J Clin Invest 108:97–105

    PubMed  CAS  Google Scholar 

  35. Manzano J, Morte B, Scanlan TS, Bernal J (2003) Differential effects of triiodothyronine and the thyroid hormone receptor beta-specific agonist GC-1 on thyroid hormone target genes in the b ain. Endocrinology 144:5480–5487

    Article  PubMed  CAS  Google Scholar 

  36. Grover GJ, Egan DM, Sleph PG, Beehler BC, Chiellini G, Nguyen NH, Baxter JD, Scanlan TS (2004) Effects of the thyroid hormone receptor agonist GC-1 on metabolic rate and cholesterol in rats and primates: selective actions relative to 3,5,3′-triiodo-L-thyronine. Endocrinology 145:1656–1661

    Article  PubMed  CAS  Google Scholar 

  37. Dupre SM, Guissouma H, Flamant F, Seugnet I, Scanlan TS, Baxter JD, Samarut J, Demeneix BA, Becker N (2004) Both thyroid hormone receptor (TR)beta 1 and TR beta 2 isoforms contribute to the regulation of hypothalamic thyrotropin-releasing hormone. Endocrinology 145:2337–2345

    Article  PubMed  CAS  Google Scholar 

  38. Johansson L, Rudling M, Scanlan TS, Lundasen T, Webb P, Baxter J, Angelin B, Parini P (2005) Selective thyroid receptor modulation by GC-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice. Proc Natl Acad Sci USA 102:10297–10302

    Article  PubMed  CAS  Google Scholar 

  39. Columbano A, Pibiri M, Deidda M, Cossu C, Scanlan TS, Chiellini G, Muntoni S, Ledda-Columbano GM (2006) The thyroid hormone receptor-beta agonist GC-1 induces cell proliferation in rat liver and pancreas. Endocrinology 147:3211–3218

    Article  PubMed  CAS  Google Scholar 

  40. Villicev CM, Freitas FR, Aoki MS, Taffarel C, Scanlan TS, Moriscot AS, Ribeiro MO, Bianco AC, Gouveia CH (2007) Thyroid hormone receptor beta-specific agonist GC-1 increases energy expenditure and prevents fat-mass accumulation in rats. J Endocrinol 193:21–29

    Article  PubMed  CAS  Google Scholar 

  41. Johansson C, Gothe S, Forrest D, Vennstrom B, Thoren P (1999) Cardiovascular phenotype and temperature control in mice lacking thyroid hormone receptor-beta or both alpha1 and beta. Am J Physiol 276:H2006–H2012

    PubMed  CAS  Google Scholar 

  42. Freitas FR, Moriscot AS, Jorgetti V, Soares AG, Passarelli M, Scanlan TS, Brent GA, Bianco AC, Gouveia CH (2003) Spared bone mass in rats treated with thyroid hormone receptor TR beta-selective compound GC-1. Am J Physiol Endocrinol Metab 285:E1135–E1141

    PubMed  CAS  Google Scholar 

  43. Freitas FR, Capelo LP, O’Shea PJ, Jorgetti V, Moriscot AS, Scanlan TS, Williams GR, Zorn TM, Gouveia CH (2005) The thyroid hormone receptor beta-specific agonist GC-1 selectively affects the bone development of hypothyroid rats. J Bone Miner Res 20:294–304

    Article  PubMed  CAS  Google Scholar 

  44. Auzubel FB, Kingston R, Moore DD, Seidman JG, Smith JA, Struhl K, Albright LM, Coen DM, Vark A (eds) (1994) Current protocols in molecular biology. John Wiley & Sons, New York

    Google Scholar 

  45. Lotfi CF, Todorovic Z, Armelin HA, Schimmer BP (1997) Unmasking a growth-promoting effect of the adrenocorticotropic hormone in Y1 mouse adrenocortical tumor cells. J Biol Chem 272:29886–29891

    Article  PubMed  CAS  Google Scholar 

  46. Livak K (1997) ABI Prism 7700 sequence detection system, user bulletin 2. Applied Biosystems, Foster City, CA

    Google Scholar 

  47. Liu W, Saint DA (2002) A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem 302:52–59

    Article  PubMed  CAS  Google Scholar 

  48. Gruber R, Czerwenka K, Wolf F, Ho GM, Willheim M, Peterlik M (1999) Expression of the vitamin D receptor, of estrogen and thyroid hormone receptor alpha- and beta-isoforms, and of the androgen receptor in cultures of native mouse bone marrow and of stromal/osteoblastic cells. Bone 24:465–473

    Article  PubMed  CAS  Google Scholar 

  49. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3–E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692

    Article  PubMed  CAS  Google Scholar 

  50. Capelo LP, Beber EH, Huang SA, Zorn TM, Bianco AC, Gouveia CH (2008) Deiodinase-mediated thyroid hormone inactivation minimizes thyroid hormone signaling in the early development of fetal skeleton. Bone 43(5):921–930

    Article  PubMed  CAS  Google Scholar 

  51. Varga F, Spitzer S, Rumpler M, Klaushofer K (2003) 1, 25-Dihydroxyvitamin D3 inhibits thyroid hormone-induced osteocalcin expression in mouse osteoblast-like cells via a thyroid hormone response element. J Mol Endocrinol 30:49–57

    Article  PubMed  CAS  Google Scholar 

  52. Klaushofer K, Varga F, Glantschnig H, Fratzl-Zelman N, Czerwenka E, Leis HJ, Koller K, Peterlik M (1995) The regulatory role of thyroid hormones in bone cell growth and differentiation. J Nutr 125:1996S–2003S

    PubMed  CAS  Google Scholar 

  53. O’Shea PJ, Harvey CB, Suzuki H, Kaneshige M, Kaneshige K, Cheng SY, Williams GR (2003) A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone. Mol Endocrinol 17:1410–1424

    Article  PubMed  CAS  Google Scholar 

  54. Opitz R, Lutz I, Nguyen NH, Scanlan TS, Kloas W (2006) Analysis of thyroid hormone receptor betaA mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action. Toxicol Appl Pharmacol 212:1–13

    Article  PubMed  CAS  Google Scholar 

  55. Sakurai A, Miyamoto T, DeGroot LJ (1992) Cloning and characterization of the human thyroid hormone receptor beta 1 gene promoter. Biochem Biophys Res Commun 185:78–84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Maria Luiza Barreto-Chaves and Dr. Anselmo S. Moriscot (Institute of Biomedical Sciences, University of Sao Paulo) for making their laboratories available for some experiments. This work was supported by a grant (CHAG) from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil (05/52910-4), and a grant (TSS) from the NIH (DK52798). E.H.B., L.P.C., T.L.F., and C.C.C. were recipients of fellowships from CAPES and FAPESP (03/07327-3, 05/59557-8, and 06/52982-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia H. A. Gouveia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beber, E.H., Capelo, L.P., Fonseca, T.L. et al. The Thyroid Hormone Receptor (TR) β-Selective Agonist GC-1 Inhibits Proliferation But Induces Differentiation and TR β mRNA Expression in Mouse and Rat Osteoblast-Like Cells. Calcif Tissue Int 84, 324–333 (2009). https://doi.org/10.1007/s00223-009-9230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9230-1

Keywords

Navigation