Skip to main content

Advertisement

Log in

Quantitative Trait Locus on Chromosome 1q Influences Bone Loss in Young Mexican American Adults

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone loss occurs as early as the third decade and its cumulative effect throughout adulthood may impact risk for osteoporosis in later life, however, the genes and environmental factors influencing early bone loss are largely unknown. We investigated the role of genes in the change in bone mineral density (BMD) in participants in the San Antonio Family Osteoporosis Study. BMD change in 327 Mexican Americans (ages 25–45 years) from 32 extended pedigrees was calculated from DXA measurements at baseline and follow-up (3.5 to 8.9 years later). Family-based likelihood methods were used to estimate heritability (h 2) and perform autosome-wide linkage analysis for BMD change of the proximal femur and forearm and to estimate heritability for BMD change of lumbar spine. BMD change was significantly heritable for total hip, ultradistal radius, and 33% radius (h 2 = 0.34, 0.34, and 0.27, respectively; p < 0.03 for all), modestly heritable for femoral neck (h 2 = 0.22; p = 0.06) and not heritable for spine BMD. Covariates associated with BMD change included age, sex, baseline BMD, menopause, body mass index, and interim BMI change, and accounted for 6% to 24% of phenotype variation. A significant quantitative trait locus (LOD = 3.6) for femoral neck BMD change was observed on chromosome 1q23. In conclusion, we observed that change in BMD in young adults is heritable and performed one of the first linkage studies for BMD change. Linkage to chromosome 1q23 suggests that this region may harbor one or more genes involved in regulating early BMD change of the femoral neck.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hui SL, Slemenda CW, Johnston CC Jr (1990) The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1:30–34

    Article  PubMed  CAS  Google Scholar 

  2. Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, Kiel DP (2000) Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 15:710–720

    Article  PubMed  CAS  Google Scholar 

  3. Jordan KM, Cooper C (2002) Epidemiology of osteoporosis. Best Pract Res Clin Rheumatol 16:795–806

    Article  PubMed  CAS  Google Scholar 

  4. Wilkins CH, Birge SJ (2005) Prevention of osteoporotic fractures in the elderly. Am J Med 118:1190–1195

    Article  PubMed  Google Scholar 

  5. Dirschl DR, Henderson RC, Oakley WC (1997) Accelerated bone mineral loss following a hip fracture: a prospective longitudinal study. Bone 21:79–82

    Article  PubMed  CAS  Google Scholar 

  6. Engelke K, Kemmler W, Lauber D, Beeskow C, Pintag R, Kalender WA (2006) Exercise maintains bone density at spine and hip EFOPS: a 3-year longitudinal study in early postmenopausal women. Osteoporos Int 17:133–142

    Article  PubMed  CAS  Google Scholar 

  7. Melton LJ 3rd, Khosla S, Atkinson EJ, Oconnor MK, Ofallon WM, Riggs BL (2000) Cross-sectional versus longitudinal evaluation of bone loss in men and women. Osteoporos Int 11:592–599

    Article  PubMed  Google Scholar 

  8. Warming L, Hassager C, Christiansen C (2002) Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 13:105–112

    Article  PubMed  CAS  Google Scholar 

  9. Christian JC, Yu PL, Slemenda CW, Johnston CC Jr (1989) Heritability of bone mass: a longitudinal study in aging male twins. Am J Hum Genet 44:429–433

    PubMed  CAS  Google Scholar 

  10. Wang X, Kammerer CM, Wheeler VW, Patrick AL, Bunker CH, Zmuda JM (2007) Genetic and environmental determinants of volumetric and areal BMD in multi-generational families of African ancestry: the Tobago Family Health Study. J Bone Miner Res 22:527–536

    Article  PubMed  Google Scholar 

  11. Mitchell BD, Kammerer CM, Schneider JL, Perez R, Bauer RL (2003) Genetic and environmental determinants of bone mineral density in Mexican Americans: results from the San Antonio Family Osteoporosis Study. Bone 33:839–846

    Article  PubMed  Google Scholar 

  12. Brown LB, Streeten EA, Shapiro JR, McBride D, Shuldiner AR, Peyser PA, Mitchell BD (2005) Genetic and environmental influences on bone mineral density in pre- and post-menopausal women. Osteoporos Int 16:1849–1856

    Article  PubMed  Google Scholar 

  13. Brown LB, Streeten EA, Shuldiner AR, Almasy LA, Peyser PA, Mitchell BD (2004) Assessment of sex-specific genetic and environmental effects on bone mineral density. Genet Epidemiol 27:153–161

    Article  PubMed  Google Scholar 

  14. Deng HW, Chen WM, Conway T, Zhou Y, Davies KM, Stegman MR, Deng H, Recker RR (2000) Determination of bone mineral density of the hip and spine in human pedigrees by genetic and life-style factors. Genet Epidemiol 19:160–177

    Article  PubMed  CAS  Google Scholar 

  15. Deng HW, Xu FH, Huang QY, Shen H, Deng H, Conway T, Liu YJ, Liu YZ, Li JL, Zhang HT, Davies KM, Recker RR (2002) A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait Loci for osteoporosis. J Clin Endocrinol Metab 87:5151–5159

    Article  PubMed  CAS  Google Scholar 

  16. Devoto M, Specchia C, Li HH, Caminis J, Tenenhouse A, Rodriguez H, Spotila LD (2001) Variance component linkage analysis indicates a QTL for femoral neck bone mineral density on chromosome 1p36. Hum Mol Genet 10:2447–2452

    Article  PubMed  CAS  Google Scholar 

  17. Econs MJ, Koller DL, Hui SL, Fishburn T, Conneally PM, Johnston CC Jr, Peacock M, Foroud TM (2004) Confirmation of linkage to chromosome 1q for peak vertebral bone mineral density in premenopausal white women. Am J Hum Genet 74:223–228

    Article  PubMed  CAS  Google Scholar 

  18. Johnson ML, Gong G, Kimberling W, Recker SM, Kimmel DB, Recker RB (1997) Linkage of a gene causing high bone mass to human chromosome 11 (11q12–13). Am J Hum Genet 60:1326–1332

    Article  PubMed  CAS  Google Scholar 

  19. Kammerer CM, Schneider JL, Cole SA, Hixson JE, Samollow PB, O’Connell JR, Perez R, Dyer TD, Almasy L, Blangero J, Bauer RL, Mitchell BD (2003) Quantitative trait loci on chromosomes 2p, 4p, and 13q influence bone mineral density of the forearm and hip in Mexican Americans. J Bone Miner Res 18:2245–2252

    Article  PubMed  CAS  Google Scholar 

  20. Karasik D, Myers RH, Cupples LA, Hannan MT, Gagnon DR, Herbert A, Kiel DP (2002) Genome screen for quantitative trait loci contributing to normal variation in bone mineral density: the Framingham Study. J Bone Miner Res 17:1718–1727

    Article  PubMed  CAS  Google Scholar 

  21. Koller DL, Econs MJ, Morin PA, Christian JC, Hui SL, Parry P, Curran ME, Rodriguez LA, Conneally PM, Joslyn G, Peacock M, Johnston CC, Foroud T (2000) Genome screen for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab 85:3116–3120

    Article  PubMed  CAS  Google Scholar 

  22. Koller DL, Rodriguez LA, Christian JC, Slemenda CW, Econs MJ, Hui SL, Morin P, Conneally PM, Joslyn G, Curran ME, Peacock M, Johnston CC, Foroud T (1998) Linkage of a QTL contributing to normal variation in bone mineral density to chromosome 11q12–13. J Bone Miner Res 13:1903–1908

    Article  PubMed  CAS  Google Scholar 

  23. Peacock M, Koller DL, Fishburn T, Krishnan S, Lai D, Hui S, Johnston CC, Foroud T, Econs MJ (2005) Sex-specific and non-sex-specific quantitative trait loci contribute to normal variation in bone mineral density in men. J Clin Endocrinol Metab 90:3060–3066

    Article  PubMed  CAS  Google Scholar 

  24. Peacock M, Koller DL, Hui S, Johnston CC, Foroud T, Econs MJ (2004) Peak bone mineral density at the hip is linked to chromosomes 14q and 15q. Osteoporos Int 15:489–496

    Article  PubMed  Google Scholar 

  25. Ralston SH, Galwey N, MacKay I, Albagha OM, Cardon L, Compston JE, Cooper C, Duncan E, Keen R, Langdahl B, McLellan A, O’Riordan J, Pols HA, Reid DM, Uitterlinden AG, Wass J, Bennett ST (2005) Loci for regulation of bone mineral density in men and women identified by genome wide linkage scan: the FAMOS study. Hum Mol Genet 14:943–951

    Article  PubMed  CAS  Google Scholar 

  26. Shen H, Zhang YY, Long JR, Xu FH, Liu YZ, Xiao P, Zhao LJ, Xiong DH, Liu YJ, Dvornyk V, Rocha-Sanchez S, Liu PY, Li JL, Conway T, Davies KM, Recker RR, Deng HW (2004) A genome-wide linkage scan for bone mineral density in an extended sample: evidence for linkage on 11q23 and Xq27. J Med Genet 41:743–751

    Article  PubMed  CAS  Google Scholar 

  27. Streeten EA, McBride DJ, Pollin TI, Ryan K, Shapiro J, Ott S, Mitchell BD, Shuldiner AR, O’Connell JR (2006) Quantitative trait loci for BMD identified by autosome-wide linkage scan to chromosomes 7q and 21q in men from the Amish Family Osteoporosis Study. J Bone Miner Res 21:1433–1442

    Article  PubMed  Google Scholar 

  28. Styrkarsdottir U, Cazier JB, Kong A, Rolfsson O, Larsen H, Bjarnadottir E, Johannsdottir VD, Sigurdardottir MS, Bagger Y, Christiansen C, Reynisdottir I, Grant SF, Jonasson K, Frigge ML, Gulcher JR, Sigurdsson G, Stefansson K (2003) Linkage of osteoporosis to chromosome 20p12 and association to BMP2. PLoS Biol 1:E69

    Article  PubMed  Google Scholar 

  29. Hsu YH, Xu X, Terwedow HA, Niu T, Hong X, Wu D, Wang L, Brain JD, Bouxsein ML, Cummings SR, Rosen CJ, Xu X (2007) Large-scale genome-wide linkage analysis for loci linked to BMD at different skeletal sites in extreme selected sibships. J Bone Miner Res 22:184–194

    Article  PubMed  CAS  Google Scholar 

  30. Ioannidis JP, Ng MY, Sham PC, Zintzaras E, Lewis CM, Deng HW, Econs MJ, Karasik D, Devoto M, Kammerer CM, Spector T, Andrew T, Cupples LA, Foroud T, Kiel DP, Koller D, Langdahl B, Mitchell BD, Peacock M, Recker R, Shen H, Sol-Church K, Spotila LD, Uitterlinden AG, Wilson SG, Kung AW, Ralston SH (2007) Meta-analysis of genome wide scans provides evidence for gender and site specific regulation of bone mass. J Bone Miner Res 22:173–183

    Article  PubMed  CAS  Google Scholar 

  31. Karasik D, Cupples LA, Hannan MT, Kiel DP (2003) Age, gender, and body mass effects on quantitative trait loci for bone mineral density: the Framingham Study. Bone 33:308–316

    Article  PubMed  CAS  Google Scholar 

  32. Lee YH, Rho YH, Choi SJ, Ji JD, Song GG (2006) Meta-analysis of genome-wide linkage studies for bone mineral density. J Hum Genet 51:480–486

    Article  PubMed  Google Scholar 

  33. Wilson SG, Reed PW, Bansal A, Chiano M, Lindersson M, Langdown M, Prince RL, Thompson D, Thompson E, Bailey M, Kleyn PW, Sambrook P, Shi MM, Spector TD (2003) Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. Am J Hum Genet 72:144–155

    Article  PubMed  CAS  Google Scholar 

  34. Xiao P, Shen H, Guo YF, Xiong DH, Liu YZ, Liu YJ, Zhao LJ, Long JR, Guo Y, Recker RR, Deng HW (2006) Genomic regions identified for BMD in a large sample including epistatic interactions and gender-specific effects. J Bone Miner Res 21:1536–1544

    Article  PubMed  CAS  Google Scholar 

  35. Hui SL, KD L, Foroud TM, Econs MJ, Johnston CC, Peacock M (2006) Heritability of changes in bone size and bone mass with age in premenopausal white sisters. J Bone Miner Res 21:1121–1125

    Article  PubMed  Google Scholar 

  36. Makovey J, Nguyen TV, Naganathan V, Wark JD, Sambrook PN (2007) Genetic effects on bone loss in peri- and postmenopausal women: a longitudinal twin study. J Bone Miner Res 22:1773–1780

    Article  PubMed  Google Scholar 

  37. Shaffer JR, Kammerer CM, Bruder JM, Cole SA, Dyer TD, Almasy L, MacCluer JW, Blangero J, Bauer RL, Mitchell BD (2008) Genetic influences on bone loss in The San Antonio Family Osteoporosis Study. Osteoporos Int 19:1759–1767

    Article  PubMed  CAS  Google Scholar 

  38. Kelly PJ, Nguyen T, Hopper J, Pocock N, Sambrook P, Eisman J (1993) Changes in axial bone density with age: a twin study. J Bone Miner Res 8:11–17

    Article  PubMed  CAS  Google Scholar 

  39. Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359:1841–1850

    Article  PubMed  Google Scholar 

  40. Slemenda C, Longcope C, Peacock M, Hui S, Johnston CC (1996) Sex steroids, bone mass, and bone loss. A prospective study of pre-, peri-, and postmenopausal women. J Clin Invest 97:14–21

    Article  PubMed  CAS  Google Scholar 

  41. Hui SL, Zhou L, Evans R, Slemenda CW, Peacock M, Weaver CM, McClintock C, Johnston CC Jr (1999) Rates of growth and loss of bone mineral in the spine and femoral neck in white females. Osteoporos Int 9:200–205

    Article  PubMed  CAS  Google Scholar 

  42. Uusi-Rasi K, Sievanen H, Pasanen M, Oja P, Vuori I (2002) Association of physical activity and calcium intake with the maintenance of bone mass in premenopausal women. Osteoporos Int 13:211–217

    Article  PubMed  CAS  Google Scholar 

  43. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23:205–214

    Article  PubMed  Google Scholar 

  44. Nordstrom P, Neovius M, Nordstrom A (2007) Early and rapid bone mineral density loss of the proximal femur in men. J Clin Endocrinol Metab 92:1902–1908

    Article  PubMed  CAS  Google Scholar 

  45. Green P, Falls K, Crooks S (1990) Documentation for CRI-MAP. Version 2.4. Washington University School of Medicine, St. Louis, MO

    Google Scholar 

  46. Heath SC (1997) Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet 61:748–760

    Article  PubMed  CAS  Google Scholar 

  47. Heath SC, Snow GL, Thompson EA, Tseng C, Wijsman EM (1997) MCMC segregation and linkage analysis. Genet Epidemiol 14:1011–1016

    Article  PubMed  CAS  Google Scholar 

  48. Blangero J, Williams JT, Almasy L (2000) Robust LOD scores for variance component-based linkage analysis. Genet Epidemiol 19(1):S8–S14

    Article  PubMed  Google Scholar 

  49. Atwood LD, Heard-Costa NL, Fox CS, Jaquish CE, Cupples LA (2006) Sex and age specific effects of chromosomal regions linked to body mass index in the Framingham Study. BMC Genet 7:7

    Article  PubMed  CAS  Google Scholar 

  50. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  PubMed  CAS  Google Scholar 

  51. Chen XD, Shen H, Lei SF, Li MX, Yang YJ, Deng HW (2006) Exclusion mapping of chromosomes 1, 4, 6 and 14 with bone mineral density in 79 Caucasian pedigrees. Bone 38:450–455

    Article  PubMed  CAS  Google Scholar 

  52. Aubin JE, Lian JB, Stein GS (2006) Bone formation: maturation and function activities of osteoblast lineage cells. In: Lian JB, Goldring SR (eds) Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society of Bone and Mineral Research, Washington, DC, pp 20–29

    Google Scholar 

  53. Rosen CJ, Kiel DP (2006) Age-related osteoporosis. In: Shane E, Kleerekoper M (eds) Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, DC, pp 71–74

    Google Scholar 

  54. Bustamante M, Nogues X, Mellibovsky L, Agueda L, Jurado S, Caceres E, Blanch J, Carreras R, Diez-Perez A, Grinberg D, Balcells S (2007) Polymorphisms in the interleukin-6 receptor gene are associated with bone mineral density and body mass index in Spanish postmenopausal women. Eur J Endocrinol 157:677–684

    Article  PubMed  CAS  Google Scholar 

  55. Ota N, Hunt SC, Nakajima T, Suzuki T, Hosoi T, Orimo H, Shirai Y, Emi M (1999) Linkage of interleukin 6 locus to human osteopenia by sibling pair analysis. Hum Genet 105:253–257

    Article  PubMed  CAS  Google Scholar 

  56. Lioumi M, Ferguson CA, Sharpe PT, Freeman T, Marenholz I, Mischke D, Heizmann C, Ragoussis J (1999) Isolation and characterization of human and mouse ZIRTL, a member of the IRT1 family of transporters, mapping within the epidermal differentiation complex. Genomics 62:272–280

    Article  PubMed  CAS  Google Scholar 

  57. Deftos LJ (2006) Calcitonin. In: Christakos S, Holick MF (eds) Primer on the metabolic diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, DC, pp 115–117

    Google Scholar 

Download references

Acknowledgments

We are deeply grateful to the participants in the San Antonio Family Osteoporosis Study. We would also like to acknowledge two anonymous reviewers for their thoughtful suggestions. This work was funded by Grants M01-RR-01346, P01-HL-45522, R01-AR-43351, and R37-MH-59490, awarded by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Shaffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaffer, J.R., Kammerer, C.M., Bruder, J.M. et al. Quantitative Trait Locus on Chromosome 1q Influences Bone Loss in Young Mexican American Adults. Calcif Tissue Int 84, 75–84 (2009). https://doi.org/10.1007/s00223-008-9197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-008-9197-3

Keywords

Navigation