Skip to main content

Advertisement

Log in

Estrogen and Testosterone Attenuate Extracellular Matrix Loss in Collagen-Induced Arthritis in Rats

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a sexually dimorphic, autoimmune inflammatory disorder affecting the joints. Joint disability in RA results primarily from loss of matrix components (collagen and glycosoaminoglycan) in the cartilage and synovium. This study was carried out to understand the effect of physiological levels of testosterone, estrogen, and progesterone on oxidative stress-induced changes in matrix composition in rat synovium in arthritis. Arthritis induction in castrated and ovariectomized rats resulted in enhanced oxidative stress and this was assessed by lipid peroxidation levels and depletion of antioxidants. This, in turn, led to significantly (p < 0.01) increased levels of TNF-α and matrix metalloproteinase-2 (MMP-2), subsequently resulting in loss of collagen, elastin, and glycosoaminoglycan (GAG) and disorganization of reticulin as evidenced by biochemical quantitation and also by staining for collagen, reticulin, and elastin. Treatment with physiological doses of dihydrotestosterone (25 mg topically) and estrogen (5 μg/0.1 ml subcutaneously) restored the antioxidant levels significantly (p < 0.05) and reduced the levels of TNF-α and MMP-2, with estrogen exhibiting a higher potency. This, in turn, attenuated the damage to reticulin organization as well as the loss of collagen and GAG in the articular tissues. However, elastin loss could not be attenuated by either treatment. Progesterone (2 mg/0.1 ml subcutaneously) was not shown to have any significance in disease modification, and on the contrary, it inhibited the protective effects of estrogen. However, progesterone contributed to increased collagen levels in the tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fujisaki K, Tanabe N, Suzuki N, Kawato T, Takeichi O, Tsuzukibashi O, Makimura M, Ito K, Maeno M (2007) Receptor activator of NF-κB ligand induces the expression of carbonic anhydrase II, cathepsin K, and matrix metalloproteinase-9 in osteoclast precursor RAW264.7 cells. Life Sci 80:1311–1318

    Article  PubMed  CAS  Google Scholar 

  2. Morodomi T, Suzuki K, Sasaguri Y, Morimoto M, Nagase H (1992) Comparative studies of a 92 kDa gelatinolytic metalloproteinase from U937 cells and matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Matrix Suppl 1:87

    PubMed  CAS  Google Scholar 

  3. Unemori EN, Hibbs MS, Amento EP (1991) Constitutive expression of a 92-kD gelatinase (type IV collagenase) by rheumatoid synovial fibroblasts and its induction in normal human fibroblasts by inflammatory cytokines. J Clin Invest 88:1656

    Article  PubMed  CAS  Google Scholar 

  4. Migita K, Eguchi K, Kawabe Y, Ichinose Y, Tsukada T, Aoyagi T, Nakamura H, Nagataki S (1996) TNF-α-mediated expression of membrane-type matrix metalloproteinase in rheumatoid synovial fibroblasts. Immunology 89:553–557

    Article  CAS  Google Scholar 

  5. Yoneda T, Ishimaru N, Arakaki R, Kobayashi M, Izawa T, Moriyama K, Hayashi Y (2004) Estrogen deficiency accelerates murine autoimmune arthritis associated with receptor activator of nuclear factor-κB ligand-mediated osteoclastogenesis. Endocrinology 145:2384–2391

    Article  PubMed  CAS  Google Scholar 

  6. Forsblad D’Elia H, Mattsson LA, Ohlsson C, Nordborg E, Carlsten H (2003) Hormone replacement therapy in rheumatoid arthritis is associated with lower serum levels of soluble IL-6 receptor and higher insulin-like growth factor 1. Arthr Res Ther 5:R202–R209

    Article  CAS  Google Scholar 

  7. Antonio J, Wilson JD, George FW (1999) Effect of castration and androgen treatment on androgen-receptor levels in rat skeletal muscles. J Appl Physiol 87:2016–2019

    PubMed  CAS  Google Scholar 

  8. Subramanian S, Tovey M, Afentoulis M, Krogstad A, Vandenbark AA, Offner H (2005) Ethinyl estradiol treats collagen-induced arthritis in DBA/1LacJ mice by inhibiting the production of TNF-α and IL-1. Clin Immunol 115:162–172

    Article  PubMed  CAS  Google Scholar 

  9. Ganesan K, Selvam R, Abhirami R, Narayana Raju KVS, Murali Manohar B, Puvanakrishnan R (2008) Gender differences and protective effects of testosterone in collagen induced arthritis in rats. Rheumatol Int 28:345–353

    Article  PubMed  CAS  Google Scholar 

  10. Ganesan K, Balachandran C, Murali Manohar B, Puvanakrishnan R (2008) Comparative studies on the interplay of testosterone, estrogen and progesterone in collagen induced arthritis in rats. Bone 43:758–765

    Article  PubMed  CAS  Google Scholar 

  11. Ashok Kumar D, Settu K, Narayana Raju KVS, Kumanan K, Murali Manohar B, Puvanakrishnan R (2006) Inhibition of nitric oxide and caspase 3 mediated apoptosis by a tetrapeptide derivative (PEP 1261) in cultured synovial fibroblasts from collagen induced arthritis. Mol Cell Biochem 282:125–139

    Article  CAS  Google Scholar 

  12. Okhawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  Google Scholar 

  13. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    PubMed  CAS  Google Scholar 

  14. Marklund SL, Marklund G (1974) Involvement of superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  PubMed  CAS  Google Scholar 

  15. Caliborne AL (1985) Assay of catalase. In: Greenwals RA (ed) Handbook of oxygen radical research. CRC Press, Baco Raton, FL, pp 203–207

    Google Scholar 

  16. Quesenberry MS, Lee YC (1996) A simple spectrophotometric method for estimation of peroxidase activity in blood samples. Anal Biochem 234:50–55

    Article  PubMed  CAS  Google Scholar 

  17. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hekstra WG (1973) Selenium, biochemical role as a component of glutathione peroxidase purification and assay. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  19. Fan L, Sarkar K, Franks DJ, Uhthoff HK (1997) Estimation of total collagen and types I and III collagen in canine rotator cuff tendons. Calcif Tissue Int 61:223–229

    Article  PubMed  CAS  Google Scholar 

  20. Neumann RE, Logan MA (1950) The determination of collagen and elastin in tissues. J Biol Chem 186:549–556

    Google Scholar 

  21. Gold EW (1979) A simple spectrometric method for estimating glycosoaminoglycan concentrations. Anal Biochem 99:183–188

    Article  PubMed  CAS  Google Scholar 

  22. Gold EW (1981) The quantitative spectrophotometric estimation of total sulphated glycosaminoglycan levels. Biochim Biophys Acta 673:408–415

    PubMed  CAS  Google Scholar 

  23. Masson P (1929) Some histological methods. Trichrome stainings and their preliminary technique. Bull Int Assoc Med 12:75

    Google Scholar 

  24. Verhoeff EH (1908) Some new staining methods of wide applicability, including a rapid differential stain fro elastic tissue. JAMA 50:876

    Google Scholar 

  25. Gomori G (1937) Silver impregnation of reticulin in paraffin sections. Am J Physiol 13:993

    CAS  Google Scholar 

  26. Jansson L, Holmdahl R (1998) Estrogen-mediated immunosuppression in autoimmune diseases. Inflamm Res 47:290–301

    Article  PubMed  CAS  Google Scholar 

  27. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344:702

    Article  Google Scholar 

  28. Hassan MQ, Hadi RA, Al-Rawi ZS, Padron VA, Stohs SJ (2001) The glutathione defense system in the pathogenesis of rheumatoid arthritis. J Appl Toxicol 22:69–73

    Article  Google Scholar 

  29. Imadaya A, Katsutoshi T, Hiroyori T, Meguni O, Kazuo T (1988) Erythrocytic antioxidant enzymes are reduced in patients with rheumatoid arthritis. J Rheumatol 15:11–37

    Google Scholar 

  30. Massafra C, Buenocore G, Giola D, Sargentini I, Farina G (1997) Effects of estradiol and medroxyprogesterone-acetate treatment on erythrocyte antioxidant enzyme activities and malondialdehyde plasma levels in amenorrhoic women. J Clin Endocrinol Metab 82:173–175

    Article  PubMed  CAS  Google Scholar 

  31. Chisu V, Manca P, Lepore G, Gadau S, Zedda M, Farina V (2006) Testosterone induces neuroprotection from oxidative stress. Arch Ital Biol 144:63–73

    PubMed  CAS  Google Scholar 

  32. Lean JM, Jagger CJ, Kirstein B, Fuller K, Chambers TJ (2005) Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology 146:728–735

    Article  PubMed  CAS  Google Scholar 

  33. Kramer PR, Kramer SF, Guan G (2004) 17 Beta-estradiol regulates cytokine release through modulation of CD16 expression in monocytes and monocyte-derived macrophages. Arthr Rheum 2004:1967–1975

    Article  CAS  Google Scholar 

  34. Cheng X, Shimizu I, Yuan Y, Wei M, Shen M, Huang H, Urata M, Sannomiya K, Fukuno H, Hashimoto-Tamaoki T, Ito S (2006) Effects of estradiol and progesterone on TNF-α-induced apoptosis in human hepatoma HuH-7 cells. Life Sci 79:1988–1994

    Article  PubMed  CAS  Google Scholar 

  35. Burkhardt H, Schwingel M, Menninger H (1986) Oxygen radicals as effectors of cartilage destruction. Arth Rheum 29:379–387

    Article  CAS  Google Scholar 

  36. Poole AR, Nelson F, Hollander A, Reiner A, Pidoux I, Ionescu M (1995) Collagen III turnover in joint diseases. Acta Orthop Scand Suppl 266:88–91

    PubMed  CAS  Google Scholar 

  37. Woessner JF Jr (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2154

    PubMed  CAS  Google Scholar 

  38. Russell RE, Thorley A, Culpitt SV (2002) Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am J Physiol Lung Cell Mol Physiol 283:L867–L873

    PubMed  CAS  Google Scholar 

  39. Corvol MT, Carrascosa A, Tsagris L, Blanchard O, Rappaport R (1987) Evidence for a direct in vitro action of sex steroids on rabbit cartilage cells during skeletal growth: influence of age and sex. Endocrinology 120:1422–1429

    Article  PubMed  CAS  Google Scholar 

  40. Tsai CI, Liu TK (1993) Estradiol-induced knee osteoarthrosis in ovariectomised rabbits. Clin Orthop 291:295–302

    PubMed  Google Scholar 

  41. Lee YJ, Lim WC, Jin YH, Lee SK (2002) Effects of estrogen receptor and estrogen on the chromatin structure in estrogen receptor stable transfectants. Exp Mol Med 34:95–99

    PubMed  CAS  Google Scholar 

  42. Oestergaard S, Sondergaard BC, Hoegh-Andersen P, Henriksen K, Qvist P, Christiansen C, Tankó LB, Karsdal MA (2006) Effects of ovariectomy and estrogen therapy on type II collagen degradation and structural integrity of articular cartilage in rats: implications of the time of initiation. Arthr Rheum 54:2441–2451

    Article  CAS  Google Scholar 

  43. Nielsen RH, Christiansen C, Stolina M, Karsdal MA (2008) Oestrogen exhibits type II collagen protective effects and attenuates collagen-induced arthritis in rats. Clin Exp Immunol 152:21–27

    Article  PubMed  CAS  Google Scholar 

  44. Clarke CL, Sutherland RL (1990) Progestin regulation of cellular proliferation. Endocr Rev 11:266–301

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. A. B. Mandal, Acting Director, CLRI, for his permission to publish this work. The award of a CSIR fellowship to Ms. Kalaivani Ganesan and Ms. Mitali Tiwari and the award of the CSIR Emeritus Scientist Project to Dr. R. Puvanakrishnan are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rengarajulu Puvanakrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesan, K., Tiwari, M., Balachandran, C. et al. Estrogen and Testosterone Attenuate Extracellular Matrix Loss in Collagen-Induced Arthritis in Rats. Calcif Tissue Int 83, 354–364 (2008). https://doi.org/10.1007/s00223-008-9183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-008-9183-9

Keywords

Navigation