Calcified Tissue International

, Volume 83, Issue 3, pp 230–242 | Cite as

Ion Transporters Involved in Acidification of the Resorption Lacuna in Osteoclasts

  • Kim Henriksen
  • Mette G. Sørensen
  • Vicki K. Jensen
  • Morten H. Dziegiel
  • Olivier Nosjean
  • Morten A. Karsdal


Osteoclasts possess a large amount of ion transporters, which participate in bone resorption; of these, the vacuolar-adenosine trisphosphatase (V-ATPase) and the chloride-proton antiporter ClC-7 acidify the resorption lacuna. However, whether other ion transporters participate in this process is currently not well understood. We used a battery of ion channel inhibitors, human osteoclasts, and their subcellular compartments to perform an unbiased analysis of the importance of the different ion transporters for acidification of the resorption lacuna in osteoclasts. CD14+ monocytes from human peripheral blood were isolated, and mature osteoclasts were generated using RANKL and M-CSF. The human osteoclasts were (1) used for acridine orange assays for evaluation of lysosomal acidification, (2) used for bone resorption assays, (3) used for generation of osteoclasts membranes for acid influx experiments, or (4) lysed in trizol for mRNA isolation for Affymetrix array analysis. Inhibitors targeted toward most of the ion transporters showed low potency in the acidification-based assays, although some inhibitors, such as carbonic anhydrase II and the sodium–hydrogen exchanger (NHE) inhibitors, reduced resorption potently. In contrast, inhibitors targeted at V-ATPase and ClC-7 potently inhibited both acidification and resorption, as expected. We here show evidence that acidification of the resorption lacuna is mainly mediated by V-ATPase and ClC-7. Furthermore, a group of other ion transporters, including carbonic anhydrase II, the NHEs, and potassium–chloride cotransporters, are all involved in resorption but do not seem to directly be involved in acidification of the lysosomes.


Osteoclast Chloride channel ClC-7 V-ATPase Inhibitor 


  1. 1.
    Roodman GD (1999) Cell biology of the osteoclast. Exp Hematol 27:1229–1241PubMedCrossRefGoogle Scholar
  2. 2.
    Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857PubMedCrossRefGoogle Scholar
  3. 3.
    Henriksen K, Gram J, Schaller S, Dahl BH, Dziegiel MH, Bollerslev J, Karsdal MA (2004) Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Am J Pathol 164:1537–1545PubMedGoogle Scholar
  4. 4.
    Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215PubMedCrossRefGoogle Scholar
  5. 5.
    Graves AR, Curran PK, Smith CL, Mindell JA (2008) The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453(7196):788–792Google Scholar
  6. 6.
    Schlesinger PH, Blair HC, Teitelbaum SL, Edwards JC (1997) Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J Biol Chem 272:18636–18643PubMedCrossRefGoogle Scholar
  7. 7.
    Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238PubMedCrossRefGoogle Scholar
  8. 8.
    Laitala T, Vaananen HK (1994) Inhibition of bone resorption in vitro by antisense RNA and DNA molecules targeted against carbonic anhydrase II or two subunits of vacuolar H+-ATPase. J Clin Invest 93:2311–2318PubMedCrossRefGoogle Scholar
  9. 9.
    Tolar J, Teitelbaum SL, Orchard PJ (2004) Osteopetrosis. N Engl J Med 351:2839–2849PubMedCrossRefGoogle Scholar
  10. 10.
    Teti A, Blair HC, Teitelbaum SL, Kahn AJ, Koziol C, Konsek J, Zambonin-Zallone A, Schlesinger PH (1989) Cytoplasmic pH regulation and chloride/bicarbonate exchange in avian osteoclasts. J Clin Invest 83:227–233PubMedCrossRefGoogle Scholar
  11. 11.
    Gupta A, Edwards JC, Hruska KA (1996) Cellular distribution and regulation of NHE-1 isoform of the NA-H exchanger in the avian osteoclast. Bone 18:87–95PubMedCrossRefGoogle Scholar
  12. 12.
    Karsdal MA, Hjorth P, Henriksen K, Kirkegaard T, Nielsen KL, Lou H, Delaisse JM, Foged NT (2003) TGF-beta controls human osteoclastogenesis through the p38 MAP kinase and regulation of RANK expression. J Biol Chem 278:44975–44987PubMedCrossRefGoogle Scholar
  13. 13.
    Kajiya H, Okamoto F, Li JP, Nakao A, Okabe K (2006) Expression of mouse osteoclast K-Cl co-transporter-1 and its role during bone resorption. J Bone Miner Res 21:984–992PubMedCrossRefGoogle Scholar
  14. 14.
    Edwards JC, Cohen C, Xu W, Schlesinger PH (2006) c-Src control of chloride channel support for osteoclast HCl transport and bone resorption. J Biol Chem 281:28011–28022PubMedCrossRefGoogle Scholar
  15. 15.
    Sorensen MG, Henriksen K, Schaller S, Henriksen DB, Nielsen FC, Dziegiel MH, Karsdal MA (2007) Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab 25:36–45PubMedCrossRefGoogle Scholar
  16. 16.
    Sundquist K, Lakkakorpi P, Wallmark B, Vaananen K (1990) Inhibition of osteoclast proton transport by bafilomycin A1 abolishes bone resorption. Biochem Biophys Res Commun 168:309–313PubMedCrossRefGoogle Scholar
  17. 17.
    Schaller S, Henriksen K, Sveigaard C, Heegaard AM, Helix N, Stahlhut M, Ovejero MC, Johansen JV, Solberg H, Andersen TL, Hougaard D, Berryman M, Shiodt CB, Sorensen BH, Lichtenberg J, Christophersen P, Foged NT, Delaisse JM, Engsig MT, Karsdal MA (2004) The chloride channel inhibitor n53736 prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res 19:1144–1153PubMedCrossRefGoogle Scholar
  18. 18.
    Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119–147PubMedCrossRefGoogle Scholar
  19. 19.
    Berryman M, Bruno J, Price J, Edwards JC (2004) CLIC-5A functions as a chloride channel in vitro and associates with the cortical actin cytoskeleton in vitro and in vivo. J Biol Chem 279:34794–34801PubMedCrossRefGoogle Scholar
  20. 20.
    Tulk BM, Schlesinger PH, Kapadia SA, Edwards JC (2000) CLIC-1 functions as a chloride channel when expressed and purified from bacteria. J Biol Chem 275:26986–26993PubMedGoogle Scholar
  21. 21.
    Liantonio A, Giannuzzi V, Picollo A, Babini E, Pusch M, Conte CD (2007) Niflumic acid inhibits chloride conductance of rat skeletal muscle by directly inhibiting the CLC-1 channel and by increasing intracellular calcium. Br J Pharmacol 150:235–247PubMedCrossRefGoogle Scholar
  22. 22.
    Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 80:2752–2756PubMedCrossRefGoogle Scholar
  23. 23.
    Hall TJ, Chambers TJ (1990) Na+/H+ antiporter is the primary proton transport system used by osteoclasts during bone resorption. J Cell Physiol 142:420–424PubMedCrossRefGoogle Scholar
  24. 24.
    Kang TC, Kim DS, Kim JE, Kwak SE, Yoo KY, Hwang IK, Jung JY, Won MH, Kwon OS, Choi SY (2006) Altered expression of K+–Cl cotransporters affects fast paired-pulse inhibition during GABA receptor activation in the gerbil hippocampus. Brain Res 1072:8–14PubMedCrossRefGoogle Scholar
  25. 25.
    Wang X, Breaks J, Loutzenhiser K, Loutzenhiser R (2007) Effects of inhibition of the Na+/K+/2Cl cotransporter on myogenic and angiotensin II responses of the rat afferent arteriole. Am J Physiol Renal Physiol 292:F999–F1006PubMedCrossRefGoogle Scholar
  26. 26.
    Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, Kang JS, Miyamoto T, Suda T, Lee SK, Pignolo RJ, Koczon-Jaremko B, Lorenzo J, Choi Y (2006) v-ATPase V(0) subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med 12:1403–1409PubMedCrossRefGoogle Scholar
  27. 27.
    Mattsson JP, Skyman C, Palokangas H, Vaananen KH, Keeling DJ (1997) Characterization and cellular distribution of the osteoclast ruffled membrane vacuolar H+-ATPase B-subunit using isoform-specific antibodies. J Bone Miner Res 12:753–760PubMedCrossRefGoogle Scholar
  28. 28.
    Zuo J, Jiang J, Chen SH, Vergara S, Gong Y, Xue J, Huang H, Kaku M, Holliday LS (2006) Actin binding activity of subunit B of vacuolar H+-ATPase is involved in its targeting to ruffled membranes of osteoclasts. J Bone Miner Res 21:714–721PubMedCrossRefGoogle Scholar
  29. 29.
    Blackwell JM, Searle S, Goswami T, Miller EN (2000) Understanding the multiple functions of Nramp1. Microbes Infect 2:317–321PubMedCrossRefGoogle Scholar
  30. 30.
    Boll M, Foltz M, Rubio-Aliaga I, Daniel H (2003) A cluster of proton/amino acid transporter genes in the human and mouse genomes. Genomics 82:47–56PubMedCrossRefGoogle Scholar
  31. 31.
    Karsdal MA, Henriksen K, Sorensen MG, Gram J, Schaller S, Dziegiel MH, Heegaard AM, Christophersen P, Martin TJ, Christiansen C, Bollerslev J (2005) Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Am J Pathol 166:467–476PubMedGoogle Scholar
  32. 32.
    Lees RL, Sabharwal VK, Heersche JN (2001) Resorptive state and cell size influence intracellular pH regulation in rabbit osteoclasts cultured on collagen-hydroxyapatite films. Bone 28:187–194PubMedCrossRefGoogle Scholar
  33. 33.
    Chen TY (2005) Structure and function of clc channels. Annu Rev Physiol 67:809–839PubMedCrossRefGoogle Scholar
  34. 34.
    Nilius B, Eggermont J, Voets T, Droogmans G (1996) Volume-activated Cl channels. Gen Pharmacol 27:1131–1140PubMedGoogle Scholar
  35. 35.
    Lehenkari P, Parikka V, Rautiala TJ, Weckstrom M, Dahllund J, Harkonen PL, Vaananen HK (2003) The effects of tamoxifen and toremifene on bone cells involve changes in plasma membrane ion conductance. J Bone Miner Res 18:473–481PubMedCrossRefGoogle Scholar
  36. 36.
    Okamoto F, Kajiya H, Toh K, Uchida S, Yoshikawa M, Sasaki S, Kido MA, Tanaka T, Okabe K (2008) Intracellular ClC-3 chloride channels promote bone resorption in vitro through organelle acidification in mouse osteoclasts. Am J Physiol Cell Physiol 294:C693–C701PubMedCrossRefGoogle Scholar
  37. 37.
    Ohba Y, Ohba T, Sumitani K, Tagami-Kondoh K, Hiura K, Miki Y, Kakegawa H, Takano-Yamamoto T, Katunuma N (1996) Inhibitory mechanisms of H+-ATPase inhibitor bafilomycin A1 and carbonic anhydrase II inhibitor acetazolamide on experimental bone resorption. FEBS Lett 387:175–178PubMedCrossRefGoogle Scholar
  38. 38.
    Lehenkari P, Hentunen TA, Laitala-Leinonen T, Tuukkanen J, Vaananen HK (1998) Carbonic anhydrase II plays a major role in osteoclast differentiation and bone resorption by effecting the steady state intracellular pH and Ca2+. Exp Cell Res 242:128–137PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kim Henriksen
    • 1
  • Mette G. Sørensen
    • 1
  • Vicki K. Jensen
    • 1
  • Morten H. Dziegiel
    • 2
  • Olivier Nosjean
    • 3
  • Morten A. Karsdal
    • 1
  1. 1.Nordic Bioscience A/SHerlevDenmark
  2. 2.HS BlodbankUniversity Hospital of CopenhagenCopenhagenDenmark
  3. 3.Institut de Recherches Servier (IdRS)Croissy-sur-SeineFrance

Personalised recommendations