Skip to main content

Advertisement

Log in

Founder Effect in Different European Countries for the Recurrent P392L SQSTM1 Mutation in Paget’s Disease of Bone

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Paget’s Disease of Bone (PDB) is one of the most frequent metabolic bone diseases, affecting 1–5% of Western populations older than 55 years. Mutations in the sequestosome1 (SQSTM1) gene cause PDB in about one-third of familial PDB cases and in 2.4–9.3% of nonfamilial PDB cases, with the 1215CT (P392L) mutation being the most frequent one. We investigated whether a founder effect of the P392L SQSTM1 mutation was present in Belgian (n = 233), Dutch (n = 82), and Spanish (n = 64) patients without a PDB family history. First, direct sequencing analysis of exon 8 in these three populations showed that the P392L mutation occurred in 17 Belgian patients (7.3%), three Dutch patients without a family history (3.7%), and two Dutch patients with a family history. In the Spanish population, 15.6% of patients (n = 10) had the P392L mutation, including one homozygous mutant. This is by far the highest mutation frequency of all populations investigated so far. Next, we examined the genetic background of 33 mutated chromosomes by analyzing haplotypes. We genotyped four single-nucleotide polymorphisms (SNPs) in exon 6 and the 3′-untranslated region of SQSTM1 (rs4935C/T, rs4797G/A, rs10277T/C, and rs1065154G/T) and used software programs WHAP and PHASE to reconstruct haplotypes. Finally, allele-specific primers allowed us to assign the mutation to one of the two haplotypes from each individual. Sequencing results revealed that all 33 P392L mutations were on the CGTG (H2) haplotype. The chance to obtain this result due to 33 independent mutation events is 3.97 × 10−14, providing strong evidence for a founder effect of the P392L SQSTM1 mutation in Belgian, Dutch, and Spanish patients with PDB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Choma TJ, Kuklo TR, Islinger RB, Murphey MD, Temple HT (2004) Paget’s disease of bone in patients younger than 40 years. Clin Orthop Relat Res 418:202–204

    Article  PubMed  Google Scholar 

  2. Siris ES (1998) Paget’s disease of bone. J Bone Miner Res 13:1061–1065

    Article  PubMed  CAS  Google Scholar 

  3. Barker DJ (1981) The epidemiology of Paget’s disease. Metab Bone Dis Relat Res 3:231–233

    Article  PubMed  CAS  Google Scholar 

  4. Selby PL, Davie MW, Ralston SH, Stone MD (2002) Guidelines on the management of Paget’s disease of bone. Bone 31:366–373

    Article  PubMed  CAS  Google Scholar 

  5. Devogelaer JP, Nagant de Deuxchaisnes C (2003) Paget’s disease of bone. In: Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, Weismann MH (eds) Rheumatology 3rd edn. Mosby, Toronto, pp 2139–2147

  6. Roodman GD, Windle JJ (2005) Paget disease of bone. J Clin Invest 115:200–208

    PubMed  CAS  Google Scholar 

  7. Ralston SH, Digiovine FS, Gallacher SJ, Boyle IT, Duff GW (1991) Failure to detect paramyxovirus sequences in Paget’s disease of bone using the polymerase chain reaction. J Bone Miner Res 6:1243–1248

    Article  PubMed  CAS  Google Scholar 

  8. Nuovo MA, Nuovo GJ, MacConnell P, Forde A, Steiner GC (1992) In situ analysis of Paget’s disease of bone for measles-specific PCR-amplified cDNA. Diagn Mol Pathol 1:256–265

    Article  PubMed  CAS  Google Scholar 

  9. Birch MA, Taylor W, Fraser WD, Ralston SH, Hart CA, Gallagher JA (1994) Absence of paramyxovirus RNA in cultures of pagetic bone cells and in pagetic bone. J Bone Miner Res 9:11–16

    PubMed  CAS  Google Scholar 

  10. Helfrich MH, Hobson RP, Grabowski PS, Zurbriggen A, Cosby SL, Dickson GR, Fraser WD, Ooi CG, Selby PL, Crisp AJ, Wallace RG, Kahn S, Ralston SH (2000) A negative search for a paramyxoviral etiology of Paget’s disease of bone: molecular, immunological, and ultrastructural studies in UK patients. J Bone Miner Res 15:2315–2329

    Article  PubMed  CAS  Google Scholar 

  11. Ooi CG, Walsh CA, Gallagher JA, Fraser WD (2000) Absence of measles virus and canine distemper virus transcripts in long-term bone marrow cultures from patients with Paget’s disease of bone. Bone 27:417–421

    Article  PubMed  CAS  Google Scholar 

  12. Ralston SH, Hobson RP, Pennington TH, Helfrich MH (1997) Does Paget’s disease really have a viral aetiology? J Bone Miner Res 12:863–865

    Article  PubMed  CAS  Google Scholar 

  13. Morales-Piga AA, Rey-Rey JS, Corres-Gonzalez J, Garcia-Sagredo JM, Lopez-Abente G (1995) Frequency and characteristics of familial aggregation of Paget’s disease of bone. J Bone Miner Res 10:663–670

    PubMed  CAS  Google Scholar 

  14. Bolland MJ, Tong PC, Naot D, Callon KE, Wattie DJ, Gamble GD, Cundy T (2007) Delayed development of Paget’s disease in offspring inheriting SQSTM1 mutations. J Bone Miner Res 22:411–415

    Article  PubMed  CAS  Google Scholar 

  15. Fotino M, Haymovits A, Falk CT (1977) Evidence for linkage between HLA and Paget’s disease. Transplant Proc 9:1867–1868

    PubMed  CAS  Google Scholar 

  16. Tilyard MW, Gardner RJ, Milligan L, Cleary TA, Stewart RD (1982) A probable linkage between familial Paget’s disease and the HLA loci. Aust N Z J Med 12:498–500

    PubMed  CAS  Google Scholar 

  17. Cody JD, Singer FR, Roodman GD, Otterund B, Lewis TB, Leppert M, Leach RJ (1997) Genetic linkage of Paget disease of the bone to chromosome 18q. Am J Hum Genet 61:1117–1122

    Article  PubMed  CAS  Google Scholar 

  18. Haslam SI, Van Hul W, Morales-Piga A, Balemans W, San-Millan JL, Nakatsuka K, Willems P, Haites NE, Ralston SH (1998) Paget’s disease of bone: evidence for a susceptibility locus on chromosome 18q and for genetic heterogeneity. J Bone Miner Res 13:911–917

    Article  PubMed  CAS  Google Scholar 

  19. Laurin N, Brown JP, Lemainque A, Duchesne A, Huot D, Lacourciere Y, Drapeau G, Verreault J, Raymond V, Morissette J (2001) Paget disease of bone: mapping of two loci at 5q35-qter and 5q31. Am J Hum Genet 69:528–543

    Article  PubMed  CAS  Google Scholar 

  20. Hocking LJ, Herbert CA, Nicholls RK, Williams F, Bennett ST, Cundy T, Nicholson GC, Wuyts W, Van Hul W, Ralston SH (2001) Genomewide search in familial Paget disease of bone shows evidence of genetic heterogeneity with candidate loci on chromosomes 2q36, 10p13, and 5q35. Am J Hum Genet 69:1055–1061

    Article  PubMed  CAS  Google Scholar 

  21. Good DA, Busfield F, Fletcher BH, Duffy DL, Kesting JB, Andersen J, Shaw JT (2002) Linkage of Paget disease of bone to a novel region on human chromosome 18q23. Am J Hum Genet 70:517–525

    Article  PubMed  CAS  Google Scholar 

  22. Laurin N, Brown JP, Morissette J, Raymond V (2002) Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet 70:1582–1588

    Article  PubMed  CAS  Google Scholar 

  23. Hocking LJ, Lucas GJ, Daroszewska A, Mangion J, Olavesen M, Cundy T, Nicholson GC, Ward L, Bennett ST, Wuyts W, Van Hul W, Ralston SH (2002) Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s disease. Hum Mol Genet 11:2735–2739

    Article  PubMed  CAS  Google Scholar 

  24. Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24:8055–8068

    Article  PubMed  CAS  Google Scholar 

  25. Paine MG, Babu JR, Seibenhener ML, Wooten MW (2005) Evidence for p62 aggregate formation: role in cell survival. FEBS Lett 579:5029–5034

    Article  PubMed  CAS  Google Scholar 

  26. Bjorkoy G, Lamark T, Johansen T (2006) p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery. Autophagy 2:138–139

    PubMed  Google Scholar 

  27. Layfield R, Cavey JR, Najat D, Long J, Sheppard PW, Ralston SH, Searle MS (2006) p62 Mutations, ubiquitin recognition and Paget’s disease of bone. Biochem Soc Trans 34:735–737

    Article  PubMed  CAS  Google Scholar 

  28. Seibenhener ML, Geetha T, Wooten MW (2007) Sequestosome 1/p62—more than just a scaffold. FEBS Lett 581:175–179

    Article  PubMed  CAS  Google Scholar 

  29. Hocking LJ, Lucas GJ, Daroszewska A, Cundy T, Nicholson GC, Donath J, Walsh JP, Finlayson C, Cavey JR, Ciani B, Sheppard PW, Searle MS, Layfield R, Ralston SH (2004) Novel UBA domain mutations of SQSTM1 in Paget’s disease of bone: genotype phenotype correlation, functional analysis, and structural consequences. J Bone Miner Res 19:1122–1127

    Article  PubMed  CAS  Google Scholar 

  30. Johnson-Pais TL, Wisdom JH, Weldon KS, Cody JD, Hansen MF, Singer FR, Leach RJ (2003) Three novel mutations in SQSTM1 identified in familial Paget’s disease of bone. J Bone Miner Res 18:1748–1753

    Article  PubMed  CAS  Google Scholar 

  31. Falchetti A, Di Stefano M, Marini F, Del Monte F, Mavilia C, Strigoli D, De Feo ML, Isaia G, Masi L, Amedei A, Cioppi F, Ghinoi V, Bongi SM, Di Fede G, Sferrazza C, Rini GB, Melchiorre D, Matucci-Cerinic M, Brandi ML (2004) Two novel mutations at exon 8 of the sequestosome 1 (SQSTM1) gene in an Italian series of patients affected by Paget’s disease of bone (PDB). J Bone Miner Res 19:1013–1017

    Article  PubMed  CAS  Google Scholar 

  32. Eekhoff EW, Karperien M, Houtsma D, Zwinderman AH, Dragoiescu C, Kneppers AL, Papapoulos SE (2004) Familial Paget’s disease in The Netherlands: occurrence, identification of new mutations in the sequestosome 1 gene, and their clinical associations. Arthritis Rheum 50:1650–1654

    Article  PubMed  CAS  Google Scholar 

  33. Beyens G, Wuyts W, Cleiren E, de Freitas F, Tiegs R, Van Hul W (2006) Identification and molecular characterization of a novel splice-site mutation (G1205C) in the SQSTM1 gene causing Paget’s disease of bone in an extended American family. Calcif Tissue Int 79:281–288

    Article  PubMed  CAS  Google Scholar 

  34. Collet C, Michou L, Audran M, Chasseigneaux S, Hilliquin P, Bardin T, Lemaire I, Cornelis F, Launay JM, Orcel P, Laplanche JL (2007) Paget’s disease of bone in the French population: novel SQSTM1 mutations, functional analysis, and genotype–phenotype correlations. J Bone Miner Res 22:310–317

    Article  PubMed  CAS  Google Scholar 

  35. Cavey JR, Ralston SH, Hocking LJ, Sheppard PW, Ciani B, Searle MS, Layfield R (2005) Loss of ubiquitin-binding associated with Paget’s disease of bone p62 (SQSTM1) mutations. J Bone Miner Res 20:619–624

    Article  PubMed  CAS  Google Scholar 

  36. Cavey JR, Ralston SH, Sheppard PW, Ciani B, Gallagher TR, Long JE, Searle MS, Layfield R (2006) Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget’s disease of bone. Calcif Tissue Int 78:271–277

    Article  PubMed  CAS  Google Scholar 

  37. Ciani B, Layfield R, Cavey JR, Sheppard PW, Searle MS (2003) Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget’s disease of bone. J Biol Chem 278:37409–37412

    Article  PubMed  CAS  Google Scholar 

  38. Layfield R, Ciani B, Ralston SH, Hocking LJ, Sheppard PW, Searle MS, Cavey JR (2004) Structural and functional studies of mutations affecting the UBA domain of SQSTM1 (p62) which cause Paget’s disease of bone. Biochem Soc Trans 32:728–730

    Article  PubMed  CAS  Google Scholar 

  39. Duran A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP, Moscat J, Diaz-Meco MT (2004) The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 6:303–309

    Article  PubMed  CAS  Google Scholar 

  40. Rea SL, Walsh JP, Ward L, Yip K, Ward BK, Kent GN, Steer JH, Xu J, Ratajczak T (2006) A novel mutation (K378X) in the sequestosome 1 gene associated with increased NF-kappaB signaling and Paget’s disease of bone with a severe phenotype. J Bone Miner Res 21:1136–1145

    Article  PubMed  CAS  Google Scholar 

  41. Yip KH, Feng H, Pavlos NJ, Zheng MH, Xu J (2006) p62 Ubiquitin binding-associated domain mediated the receptor activator of nuclear factor-kappaB ligand-induced osteoclast formation: a new insight into the pathogenesis of Paget’s disease of bone. Am J Pathol 169:503–514

    Article  PubMed  CAS  Google Scholar 

  42. Falchetti A, Di Stefano M, Marini F, Del Monte F, Gozzini A, Masi L, Tanini A, Amedei A, Carossino A, Isaia G, Brandi ML (2005) Segregation of a M404V mutation of the p62/sequestosome 1 (p62/SQSTM1) gene with polyostotic Paget’s disease of bone in an Italian family. Arthritis Res Ther 7:R1289–R1295

    Article  PubMed  CAS  Google Scholar 

  43. Lucas GJ, Hocking LJ, Daroszewska A, Cundy T, Nicholson GC, Walsh JP, Fraser WD, Meier C, Hooper MJ, Ralston SH (2005) Ubiquitin-associated domain mutations of SQSTM1 in Paget’s disease of bone: evidence for a founder effect in patients of British descent. J Bone Miner Res 20:227–231

    Article  PubMed  CAS  Google Scholar 

  44. Good DA, Busfield F, Fletcher BH, Lovelock PK, Duffy DL, Kesting JB, Andersen J, Shaw JT (2004) Identification of SQSTM1 mutations in familial Paget’s disease in Australian pedigrees. Bone 35:277–282

    Article  PubMed  CAS  Google Scholar 

  45. Gennari L, Merlotti D, Martini G, Nuti R (2006) Paget’s disease of bone in Italy. J Bone Miner Res 21(Suppl 2):P14–P21

    Article  PubMed  Google Scholar 

  46. Morissette J, Laurin N, Brown JP (2006) Sequestosome 1: mutation frequencies, haplotypes, and phenotypes in familial Paget’s disease of bone. J Bone Miner Res 21(Suppl 2):P38–P44

    Article  PubMed  CAS  Google Scholar 

  47. Leach RJ, Singer FR, Ench Y, Wisdom JH, Pina DS, Johnson-Pais TL (2006) Clinical and cellular phenotypes associated with sequestosome 1 (SQSTM1) mutations. J Bone Miner Res 21(Suppl 2):P45–P50

    Article  PubMed  CAS  Google Scholar 

  48. Beyens G, Van Hul E, Van Driessche K, Fransen E, Devogelaer JP, Vanhoenacker F, Van Offel J, Verbruggen L, De Clerck L, Westhovens R, Van Hul W (2004) Evaluation of the role of the SQSTM1 gene in sporadic Belgian patients with Paget’s disease. Calcif Tissue Int 75:144–152

    Article  PubMed  CAS  Google Scholar 

  49. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  50. Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, Le Merrer M, Munnich A (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371:252–254

    Article  PubMed  CAS  Google Scholar 

  51. Bellus GA, Hefferon TW, Ortiz de Luna RI, Hecht JT, Horton WA, Machado M, Kaitila I, McIntosh I, Francomano CA (1995) Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet 56:368–373

    PubMed  CAS  Google Scholar 

  52. Casalotti R, Simoni L, Beledi M, Barbujani G (1999) Y-chromosome polymorphisms and the origins of the European gene pool. Proc R Soc Lond B 266:1959–1965

    Article  Google Scholar 

  53. Seldin MF, Shigeta R, Villoslada P, Selmi C, Tuomilehto J, Silva G, Belmont JW, Klareskog L, Gregersen PK (2006) European population substructure: clustering of northern and southern populations. PLoS Genet 2:e143

    Article  PubMed  CAS  Google Scholar 

  54. Chikhi L, Nichols RA, Barbujani G, Beaumont MA (2002) Y genetic data support the Neolithic demic diffusion model. Proc Natl Acad Sci USA 99:11008–11013

    Article  PubMed  CAS  Google Scholar 

  55. Haak W, Forster P, Bramanti B, Matsumura S, Brandt G, Tanzer M, Villems R, Renfrew C, Gronenborn D, Alt KW, Burger J (2005) Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science 310:1016–1018

    PubMed  CAS  Google Scholar 

  56. Rojas-Villarraga A, Patarroyo PA, Contreras AS, Restrepo JF, Iglesias-Gamarra A (2006) Paget disease of bone in Colombia and Latin America. J Clin Rheumatol 12:57–60

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the Paget Foundation (2004 John G. Haddad, Jr., Research Award for research on PDB), Fonds voor Wetenschappelijk Onderzoek (FWO, G.0117.06), and a network of excellence grant (Eurobonet) from the European Union (FP6), all to W. V. H. S. B. is a senior clinical investigator of the Fund of Scientific Research (FWO-Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Van Hul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, P.Y.J., Beyens, G., Guañabens, N. et al. Founder Effect in Different European Countries for the Recurrent P392L SQSTM1 Mutation in Paget’s Disease of Bone. Calcif Tissue Int 83, 34–42 (2008). https://doi.org/10.1007/s00223-008-9137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-008-9137-2

Keywords

Navigation