Skip to main content

Advertisement

Log in

The Effects of Bone Remodeling Inhibition by Alendronate on Three-Dimensional Microarchitecture of Subchondral Bone Tissues in Guinea Pig Primary Osteoarthrosis

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We assessed whether increase of subchondral bone density enhances cartilage stress during impact loading, leading to progressive cartilage degeneration and accelerated osteoarthrosis (OA) progression. Sixty-six male guinea pigs were randomly divided into six groups. During a 9-week treatment period, four groups received twice-weekly subcutaneous injections of alendronate (ALN) in two doses: two groups received 10 μg/kg and two groups received 50 μg/kg. The two control groups received vehicle. After 9 weeks, one 10 μg/kg ALN group, one 50 μg/kg ALN group, and one control group were killed. The remaining three groups (17-week groups) were left for an additional 8 weeks, receiving the same treatment regimen before death. The left proximal tibiae were scanned by micro-computed tomography to quantify the microarchitecture of subchondral bone, followed by mechanical testing and determination of collagen and mineral. The control groups had typical OA-related cartilage degeneration at 9 and 17 weeks, whereas the 50 μg/kg ALN group had even worse degeneration in the medial condyle. It is unclear whether there is a direct or a secondary effect of ALN on the cartilage. The 9-week ALN group had significantly greater subchondral plate thickness. The 9- and 17-week groups had similar changes of cancellous bone microarchitecture, with greater volume fraction and connectivity and an extremely plate-like structure. The 9-week ALN group had greater bone mineral concentration, and the 17-week ALN group had reduced collagen concentration and greater mineral concentration. Treatment with ALN did not significantly change the mechanical properties of the cancellous bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burr DB (2004) Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthritis Cartilage 12(Suppl A):S20–S30

    Article  PubMed  Google Scholar 

  2. Radin EL, Paul IL, Rose RM (1972) Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet 1:519–522

    Article  PubMed  CAS  Google Scholar 

  3. Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop 213:34–40

    PubMed  Google Scholar 

  4. Carlson CS, Loeser RF, Purser CB, Gardin JF, Jerome CP (1996) Osteoarthritis in cynomolgus macaques. III: Effects of age, gender, and subchondral bone thickness on the severity of disease. J Bone Miner Res 11:1209–1217

    Article  PubMed  CAS  Google Scholar 

  5. Ding M, Odgaard A, Hvid I (2003) Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br 85:906–912

    PubMed  CAS  Google Scholar 

  6. Ding M, Danielsen CC, Hvid I (2006) Age-related three-dimensional microarchitectural adaptations of subchondral bone tissues in guinea pig primary osteoarthrosis. Calcif Tissue Int 78:113–122

    Article  PubMed  CAS  Google Scholar 

  7. Ding M, Danielsen CC, Hvid I (2005) Effects of hyaluronan on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis. Bone 36:489–501

    Article  PubMed  CAS  Google Scholar 

  8. Ding M, Day JS, Burr DB, Mashiba T, Hirano T, Weinans H, Sumner DR, Hvid I (2003) Canine cancellous bone microarchitecture after one year of high-dose bisphosphonates. Calcif Tissue Int 72:737–744

    Article  PubMed  CAS  Google Scholar 

  9. Day JS, Ding M, Bednarz P, van der Linden JC, Mashiba T, Hirano T, Johnston CC, Burr DB, Hvid I, Sumner DR, Weinans H (2004) Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties. J Orthop Res 22:465–471

    Article  PubMed  CAS  Google Scholar 

  10. Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694

    Article  PubMed  CAS  Google Scholar 

  11. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15:613–620

    Article  PubMed  CAS  Google Scholar 

  12. Mashiba T, Turner CH, Hirano T, Forwood MR, Johnston CC, Burr DB (2001) Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone 28:524–531

    Article  PubMed  CAS  Google Scholar 

  13. Ding M, Odgaard A, Hvid I (1999) Accuracy of cancellous bone volume fraction measured by micro-CT scanning. J Biomech 32:323–326

    Article  PubMed  CAS  Google Scholar 

  14. Hildebrand T, Rüegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Eng 1:15–23

    Article  Google Scholar 

  15. Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328

    Article  PubMed  CAS  Google Scholar 

  16. Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53:523–537

    PubMed  CAS  Google Scholar 

  17. Hogan HA, Ruhmann SP, Sampson HW (2000) The mechanical properties of cancellous bone in the proximal tibia of ovariectomized rats. J Bone Miner Res 15:284–292

    Article  PubMed  CAS  Google Scholar 

  18. Ding M, Dalstra M, Danielsen CC, Kabel J, Hvid I, Linde F (1997) Age variations in the properties of human tibial trabecular bone. J Bone Joint Surg Br 79:995–1002

    Article  PubMed  CAS  Google Scholar 

  19. Bendele AM, Hulman JF (1988) Spontaneous cartilage degeneration in guinea pigs. Arthritis Rheum 31:561–565

    Article  PubMed  CAS  Google Scholar 

  20. Bendele AM, White SL, Hulman JF (1989) Osteoarthrosis in guinea pigs: histopathologic and scanning electron microscopic features. Lab Anim Sci 39:115–121

    PubMed  CAS  Google Scholar 

  21. Friedman AW (2006) Important determinants of bone strength: beyond bone mineral density. J Clin Rheumatol 12:70–77

    Article  PubMed  Google Scholar 

  22. Danielsen CC, Mosekilde L, Svenstrup B (1993) Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution. Calcif Tissue Int 52:26–33

    Article  PubMed  CAS  Google Scholar 

  23. Burr DB (1998) The importance of subchondral bone in osteoarthrosis. Curr Opin Rheumatol 10:256–262

    Article  PubMed  CAS  Google Scholar 

  24. Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KP (1991) Subchondral bone in osteoarthritis. Calcif Tissue Int 49:20–26

    Article  PubMed  CAS  Google Scholar 

  25. Mansell JP, Bailey AJ (1998) Abnormal cancellous bone collagen metabolism in osteoarthritis. J Clin Invest 101:1596–1603

    Article  PubMed  CAS  Google Scholar 

  26. Bailey AJ, Mansell JP (1997) Do subchondral bone changes exacerbate or precede articular cartilage destruction in osteoarthritis of the elderly? Gerontology 43:296–304

    PubMed  CAS  Google Scholar 

  27. Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, Rodan GA, Duong T (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50:1193–1206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Danish Rheumatism Association (Gigtforeningen, grant 233-949-11.07.00), Hørslev-fonden, and Helga og Peter Kornings Fond. We thank Jane Pauli, Anette Milton, and Eva K. Mikkelsen for skillful technical assistance and Ulla Dansberg and Hilmar Hald for animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, M., Danielsen, C.C. & Hvid, I. The Effects of Bone Remodeling Inhibition by Alendronate on Three-Dimensional Microarchitecture of Subchondral Bone Tissues in Guinea Pig Primary Osteoarthrosis. Calcif Tissue Int 82, 77–86 (2008). https://doi.org/10.1007/s00223-007-9093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9093-2

Keywords

Navigation