Skip to main content

Advertisement

Log in

Dietary Intake of Folate, but not Vitamin B2 or B12, Is Associated with Increased Bone Mineral Density 5 Years after the Menopause: Results from a 10-Year Follow-Up Study in Early Postmenopausal Women

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Folate, vitamin B2 (riboflavin), and vitamin B12 may affect bone directly or through an effect on plasma homocysteine levels. Previously, a positive association has been found between plasma levels and bone mineral density (BMD) as well as risk of fracture. However, there are limited data on whether dietary intakes affect bone. Our aim was to investigate whether intake of folate, vitamin B2, and vitamin B12, as assessed by food records affects BMD and fracture risk. In a population-based cohort including 1,869 perimenopausal women from the Danish Osteoporosis Prevention Study, associations between intakes and BMD were assessed at baseline and after 5 years of follow-up. Moreover, associations between intakes and 5- and 10-year changes in BMD as well as risk of fracture were studied. Intakes of folate, vitamin B2, and vitamin B12 were 417 (range 290–494) μg/day, 2.70 (range 1.70–3.16) mg/day, and 4.98 (range 3.83–6.62) μg/day, respectively, i.e., slightly above the intakes recommended by the United Nations Food and Agriculture Organization. At year 5, but not at baseline, cross-sectional analyses showed positive correlations between daily intake from diet and from diet plus supplements of folate and BMD at the femoral neck (P < 0.01). However, no associations were found between intakes and changes in BMD. During 10 years of follow-up, 360 subjects sustained a fracture. Compared with 1,440 controls, logistic regression analyses revealed no difference in intakes between cases and controls. A high dietary intake of folate, but not vitamin B2 or B12, exerts positive effects on BMD; but further studies are needed to confirm this association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stone KL, Bauer DC, Sellmeyer D, Cummings SR (2004) Low serum vitamin B12 levels are associated with increased hip bone loss in older women: a prospective study. J Clin Endocrinol Metab 89:1217–1221

    Article  PubMed  CAS  Google Scholar 

  2. Dhonukshe-Rutten RAM, Lips M, de Jong N, Chin AP, Hiddink GJ, van Dusseldorp M, de Groot LCPG, van Staveren WA (2003) Vitamin B12 status is associated with bone mineral content and bone mineral density in frail elderly women but not in men. J Nutr 133:801–807

    PubMed  CAS  Google Scholar 

  3. Tucker KL, Hannan MT, Qiao N, Jacques PF, Selhub J, Cupples LA, Kiel DP (2005) Low plasma vitamin B12 is associated with lower BMD: the Framingham Osteoporosis Study. J Bone Miner Res 20:152–158

    Article  PubMed  CAS  Google Scholar 

  4. Morris MS, Jacques PF, Selhub J (2005) Relation between homocysteine and B-vitamin status indicators and bone mineral density in older Americans. Bone 37:234–242

    Article  PubMed  CAS  Google Scholar 

  5. Golbahar J, Hamidi A, Aminzadeh MA, Omrani GR (2004) Association of plasma folate, plasma total homocysteine, but not methylenetetrahydrofolate reductase C667T polymorphism, with bone mineral density in postmenopausal Iranian women: a cross-sectional study. Bone 35:760–765

    Article  PubMed  CAS  Google Scholar 

  6. Cagnacci A, Baldassari F, Rivolta G, Arangino S, Volpe A (2003) Relation of homocysteine, folate, and vitamin B12 to bone mineral density of postmenopausal women. Bone 33:956–959

    Article  PubMed  CAS  Google Scholar 

  7. Gjesdal CG, Vollset SE, Ueland PM, Refsum H, Drevon CA, Gjessing HK, Tell GS (2006) Plasma total homocysteine level and bone mineral density: the Hordaland Homocysteine Study. Arch Intern Med 166:88–94

    Article  PubMed  CAS  Google Scholar 

  8. Baines M, Kredan MB, Usher J, Davison A, Higgins G, Taylor W, West C, Fraser WD, Ranganath LR (2007) The association of homocysteine and its determinants MTHFR genotype, folate, vitamin B12 and vitamin B6 with bone mineral density in postmenopausal British women. Bone 40:730–736

    Article  PubMed  CAS  Google Scholar 

  9. Ravaglia G, Forti P, Maioli F, Servadei L, Martelli M, Brunetti N, Bastagli L, Cucinotta D, Mariani E (2005) Folate, but not homocysteine, predicts the risk of fracture in elderly persons. J Gerontol A Biol Sci Med Sci 60:1458–1462

    PubMed  Google Scholar 

  10. Sato Y, Honda Y, Iwamoto J, Kanoko T, Satoh K (2005) Effect of folate and mecobalamin on hip fractures in patients with stroke: a randomized controlled trial. JAMA 293:1082–1088

    Article  PubMed  CAS  Google Scholar 

  11. Macdonald HM, New SA, Golden MH, Campbell MK, Reid DM (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 79:155–165

    PubMed  CAS  Google Scholar 

  12. van Meurs JBJ, Dhonukshe-Rutten RAM, Pluijm SMF, van der Klift M, de Jonge R, Lindemans J, de Groot LCPG, Hofman A, Witteman JCM, van Leeuwen JPTM, Breteler MMB, Lips P, Pols HAP, Uitterlinden AG (2004) Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 350:2033–2041

    Article  PubMed  Google Scholar 

  13. McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, Hannan MT, Cupples LA, Kiel DP (2004) Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med 350:2042–2049

    Article  PubMed  CAS  Google Scholar 

  14. McLean RR, Karasik D, Selhub J, Tucker KL, Ordovas JM, Russo GT, Cupples LA, Jacques PF, Kiel DP (2004) Association of a common polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene with bone phenotypes depends on plasma folate status. J Bone Miner Res 19:410–418

    Article  PubMed  CAS  Google Scholar 

  15. Abrahamsen B, Madsen JS, Tofteng CL, Stilgren L, Bladbjerg EM, Kristensen SR, Brixen K, Mosekilde L (2003) A common methylenetetrahydrofolate reductase (C677T) polymorphism is associated with low bone mineral density and increased fracture incidence after menopause: longitudinal data from the Danish Osteoporosis Prevention Study. J Bone Miner Res 18:723–729

    Article  PubMed  CAS  Google Scholar 

  16. Miyao M, Morita H, Hosoi T, Kurihara H, Inoue S, Hoshino S, Shiraki M, Yazaki Y, Ouchi Y (2000) Association of methylenetetrahydrofolate reductase (MTHFR) polymorphism with bone mineral density in postmenopausal Japanese women. Calcif Tissue Int 66:190–194

    Article  PubMed  CAS  Google Scholar 

  17. Jorgensen HL, Madsen JS, Madsen B, Saleh MM, Abrahamsen B, Fenger M, Lauritzen JB (2002) Association of a common allelic polymorphism (C677T) in the methylene tetrahydrofolate reductase gene with a reduced risk of osteoporotic fractures. A case control study in Danish postmenopausal women. Calcif Tissue Int 71:386–392

    CAS  Google Scholar 

  18. Abrahamsen B, Madsen JS, Tofteng CL, Stilgren L, Bladbjerg EM, Kristensen SR, Brixen K, Mosekilde L (2005) Are effects of MTHFR (C677T) genotype on BMD confined to women with low folate and riboflavin intake? Analysis of food records from the Danish Osteoporosis Prevention Study. Bone 36:577–583

    Article  PubMed  CAS  Google Scholar 

  19. Jadad AR (1998) Randomised controlled trials. A user´s guide. BMJ Books, London

    Google Scholar 

  20. Mosekilde L, Hermann AP, Beck NH, Charles P, Nielsen SP, Sorensen OH (1999) The Danish Osteoporosis Prevention Study (DOPS): project design and inclusion of 2000 normal perimenopausal women. Maturitas 31:207–219

    Article  PubMed  CAS  Google Scholar 

  21. Vestergaard P, Hermann AP, Gram J, Jensen LB, Kolthoff N, Abrahamsen B, Brot C, Eiken P (1997) Improving compliance with hormonal replacement therapy in primary osteoporosis prevention. Maturitas 28:137–145

    Article  PubMed  CAS  Google Scholar 

  22. Moller A (1989) Food composition tables. Publication SC3. Danish National Food Agency, Copenhagen

    Google Scholar 

  23. Bailey LB (1998) Dietary reference intakes for folate: the debut of dietary folate equivalents. Nutr Rev 56:294–299

    Article  PubMed  CAS  Google Scholar 

  24. Abrahamsen B, Gram J, Hansen TB, Beck-Nielsen H (1995) Cross calibration of QDR-2000 and QDR-1000 dual-energy X-ray densitometers for bone mineral and soft-tissue measurements. Bone 16:385–390

    Article  PubMed  CAS  Google Scholar 

  25. World Health Organization, Food, Agriculture Organization of the United Nations (2002) Human vitamin and mineral requirements: report of a joint FAO/WHO expert consultation, Bangkok, Thailand. World Health Organization, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  26. Browner WS, Malinow MR (1991) Homocyst(e)inaemia and bone density in elderly women. Lancet 338:1470

    Article  PubMed  CAS  Google Scholar 

  27. Jackson SH (1973) The reaction of homocysteine with aldehyde: an explanation of the collagen defects in homocystinuria. Clin Chim Acta 45:215–217

    Article  PubMed  CAS  Google Scholar 

  28. Selhub J, Jacques PF, Rosenberg IH, Rogers G, Bowman BA, Gunter EW, Wright JD, Johnson CL (1999) Serum total homocysteine concentrations in the Third National Health and Nutrition Examination Survey (1991–1994): population reference ranges and contribution of vitamin status to high serum concentrations. Ann Intern Med 131:331–339

    PubMed  CAS  Google Scholar 

  29. McNulty H, McKinley MC, Wilson B, McPartlin J, Strain JJ, Weir DG, Scott JM (2002) Impaired functioning of thermolabile methylenetetrahydrofolate reductase is dependent on riboflavin status: implications for riboflavin requirements. Am J Clin Nutr 76:436–441

    PubMed  CAS  Google Scholar 

  30. Macdonald HM, McGuigan FE, Fraser WD, New SA, Ralston SH, Reid DM (2004) Methylenetetrahydrofolate reductase polymorphism interacts with riboflavin intake to influence bone mineral density. Bone 35:957–964

    Article  PubMed  CAS  Google Scholar 

  31. Eastell R, Vieira NE, Yergey AL, Wahner HW, Silverstein MN, Kumar R, Riggs BL (1992) Pernicious anaemia as a risk factor for osteoporosis. Clin Sci (Lond) 82:681–685

    CAS  Google Scholar 

  32. Goerss JB, Kim CH, Atkinson EJ, Eastell R, O’Fallon WM, Melton LJ III (1992) Risk of fractures in patients with pernicious anemia. J Bone Miner Res 7:573–579

    Article  PubMed  CAS  Google Scholar 

  33. Carmel R, Lau KH, Baylink DJ, Saxena S, Singer FR (1988) Cobalamin and osteoblast-specific proteins. N Engl J Med 319:70–75

    Article  PubMed  CAS  Google Scholar 

  34. Kim GS, Kim C-H, Park JY, Lee K-U, Park CS (1996) Effects of vitamin B12 on cell proliferation and cellular alkaline phosphatase activity in human bone marrow stromal osteoprogenitor cells and UMR106 osteoblastic cells. Metabolism 45:1443–1446

    Article  PubMed  CAS  Google Scholar 

  35. Ward M, McNulty H, McPartlin J, Strain JJ, Weir DG, Scott JM (1997) Plasma homocysteine, a risk factor for cardiovascular disease, is lowered by physiological doses of folic acid. QJM 90:519–524

    Article  PubMed  CAS  Google Scholar 

  36. Yang TL, Hung J, Caudill MA, Urrutia TF, Alamilla A, Perry CA, Li R, Hata H, Cogger EA (2005) A long-term controlled folate feeding study in young women supports the validity of the 1.7 multiplier in the dietary folate equivalency equation. J Nutr 135:1139–1145

    PubMed  CAS  Google Scholar 

  37. Carkeet C, Dueker SR, Lango J, Buchholz BA, Miller JW, Green R, Hammock BD, Roth JR, Anderson PJ (2006) Human vitamin B12 absorption measurement by accelerator mass spectrometry using specifically labeled 14C-cobalamin. Proc Natl Acad Sci USA 103:5694–5699

    Article  PubMed  CAS  Google Scholar 

  38. Howard JM, Azen C, Jacobsen DW, Green R, Carmel R (1998) Dietary intake of cobalamin in elderly people who have abnormal serum cobalamin, methylmalonic acid and homocysteine levels. Eur J Clin Nutr 52:582–587

    Article  PubMed  CAS  Google Scholar 

  39. Tucker KL, Rich S, Rosenberg I, Jacques P, Dallal G, Wilson PW, Selhub J (2000) Plasma vitamin B12 concentrations relate to intake source in the Framingham Offspring Study. Am J Clin Nutr 71:514–522

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rejnmark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rejnmark, L., Vestergaard, P., Hermann, A.P. et al. Dietary Intake of Folate, but not Vitamin B2 or B12, Is Associated with Increased Bone Mineral Density 5 Years after the Menopause: Results from a 10-Year Follow-Up Study in Early Postmenopausal Women. Calcif Tissue Int 82, 1–11 (2008). https://doi.org/10.1007/s00223-007-9087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9087-0

Keywords

Navigation