Skip to main content

Advertisement

Log in

Marfan-Like Skeletal Phenotype in the Tight Skin (Tsk) Mouse

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Tight skin (Tsk) is an autosomal dominant mutation located on mouse chromosome 2 and is associated with an intragenic duplication of the fibrillin 1 (Fbn1) gene. Mutant mice (Tsk/+) display a tightness of skin in the interscapular region, lung emphysema, myocardial hypertrophy, skeletal overgrowth, and kyphosis. It is hypothesized in this study that in Tsk mice the mutation in Fbn1 alters bone cell metabolism. A detailed study of the Tsk skeletal phenotype revealed that Tsk mice have significantly longer femurs and axial skeleton as well as vertebral abnormalities. Cortical and trabecular bone volumes were significantly decreased in Tsk femurs from 2- and 4-month-old mice (13% and 39%, respectively) as well as trabecular thickness, number, connectivity, and surface area. These skeletal differences were also associated with a reduction in bone mineral density in mutant mice. Expression of the osteoblast-specific genes Col1a1, BSP and OC was examined in marrow stromal cell cultures at various time points. A decrease in the rate of maturation of the Tsk cells was indicated by a delay in the appearance of OC expression. These initial experiments demonstrated a significant role of the fibrillin 1 protein in the extracellular matrix of bone cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siracusa LD, McGrath R, Ma Q, Moskow JJ, Manne J, Christner PJ, Buchberg AM, Jimenez SA (1996) A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation. Genome Res 6:300–313

    Article  PubMed  CAS  Google Scholar 

  2. Green MC, Sweet HO, Bunker LE (1976) Tight-skin, a new mutation of the mouse causing excessive growth of connective tissue and skeleton. Am J Pathol 82:493–512

    PubMed  CAS  Google Scholar 

  3. Clark SH (2005) Animal models in scleroderma. Curr Rheumatol Rep 7:150–155

    Article  PubMed  CAS  Google Scholar 

  4. Christner PJ, Jimenez SA (2004) Animal models of systemic sclerosis: insights into systemic sclerosis pathogenesis and potential therapeutic approaches. Curr Opin Rheumatol 16:746–752

    Article  PubMed  Google Scholar 

  5. Abraham DJ, Varga J (2005) Scleroderma: from cell and molecular mechanisms to disease models. Trends Immunol 26:587–595

    Article  PubMed  CAS  Google Scholar 

  6. Saito E, Fujimoto M, Hasegawa M, Komura K, Hamaguchi Y, Kaburagi Y, Nagaoka T, Takehara K, Tedder TF, Sato S (2002) CD19-dependent B lymphocyte signaling thresholds influence skin fibrosis and autoimmunity in the tight-skin mouse. J Clin Invest 109:1453–1462

    Article  PubMed  CAS  Google Scholar 

  7. Lemaire R, Farina G, Kissin E, Shipley JM, Bona C, Korn JH, Lafyatis R (2004) Mutant fibrillin 1 from tight skin mice increases extracellular matrix incorporation of microfibril-associated glycoprotein 2 and type I collagen. Arthritis Rheum 50:915–926

    Article  PubMed  CAS  Google Scholar 

  8. Baxter RM, Crowell TP, McCrann ME, Frew EM, Gardner H (2005) Analysis of the tight skin (Tsk1/+) mouse as a model for testing antifibrotic agents. Lab Invest 85:1199–1209

    Article  PubMed  CAS  Google Scholar 

  9. Kainulainen K, Karttunen L, Puhakka L, Sakai L, Peltonen L (1994) Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nat Genet 6:64–69

    Article  PubMed  CAS  Google Scholar 

  10. Sakai LY, Keene DR, Engvall E (1986) Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103:2499–2509

    Article  PubMed  CAS  Google Scholar 

  11. Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J, Mecham RP, Ramirez F (1994) Structure and expression of fibrillin−2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol 124:855–863

    Article  PubMed  CAS  Google Scholar 

  12. Kanzaki T, Olofsson A, Moren A, Wernstedt C, Hellman U, Miyazono K, Claesson-Welsh L, Heldin CH (1990) TGF-beta 1 binding protein: a component of the large latent complex of TGF-beta 1 with multiple repeat sequences. Cell 61:1051–1061

    Article  PubMed  CAS  Google Scholar 

  13. Yin W, Smiley E, Germiller J, Mecham RP, Florer JB, Wenstrup RJ, Bonadio J (1995) Isolation of a novel latent transforming growth factor-beta binding protein gene (LTBP-3). J Biol Chem 270:10147–10160

    Article  PubMed  CAS  Google Scholar 

  14. Miao D, Bai X, Panda D, McKee M, Karaplis A, Goltzman D (2001) Osteomalacia in hyp mice is associated with abnormal phex expression and with altered bone matrix protein expression and deposition. Endocrinology 142:926–939

    Article  PubMed  CAS  Google Scholar 

  15. Dietz HC, Ramirez F, Sakai LY (1994) Marfan’s syndrome and other microfibrillar diseases. Adv Hum Genet 22:153–186

    PubMed  CAS  Google Scholar 

  16. Lee B, Godfrey M, Vitale E, Hori H, Mattei MG, Sarfarazi M, Tsipouras P, Ramirez F, Hollister DW (1991) Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature 352:330–334

    Article  PubMed  CAS  Google Scholar 

  17. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, et al. (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339

    Article  PubMed  CAS  Google Scholar 

  18. Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T, Allard D, Varret M, Claustres M, Morisaki H, Ihara M, Kinoshita A, Yoshiura K, Junien C, Kajii T, Jondeau G, Ohta T, Kishino T, Furukawa Y, Nakamura Y, Niikawa N, Boileau C, Matsumoto N (2004) Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 36:855–860

    Article  PubMed  CAS  Google Scholar 

  19. Dietz HC, Loeys B, Carta L, Ramirez F (2005) Recent progress towards a molecular understanding of Marfan syndrome. Am J Med Genet C Semin Med Genet 139:4–9

    PubMed  Google Scholar 

  20. Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY, Dietz HC (2004) Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 114:172–181

    Article  PubMed  CAS  Google Scholar 

  21. Lemaire R, Bayle J, Lafyatis R (2006) Fibrillin in Marfan syndrome and tight skin mice provides new insights into transforming growth factor-beta regulation and systemic sclerosis. Curr Opin Rheumatol 18:582–587

    Article  PubMed  CAS  Google Scholar 

  22. Pines M, Domb A, Ohana M, Inbar J, Genina O, Alexiev R, Nagler A (2001) Reduction in dermal fibrosis in the tight-skin (Tsk) mouse after local application of halofuginone. Biochem Pharmacol 62:1221–1227

    Article  PubMed  CAS  Google Scholar 

  23. McGaha T, Kodera T, Phelps R, Spiera H, Pines M, Bona C (2002) Effect of halofuginone on the development of tight skin (TSK) syndrome. Autoimmunity 35:277–282

    Article  PubMed  CAS  Google Scholar 

  24. McGaha T, Saito S, Phelps RG, Gordon R, Noben-Trauth N, Paul WE, Bona C (2001) Lack of skin fibrosis in tight skin (TSK) mice with targeted mutation in the interleukin−4R alpha and transforming growth factor-beta genes. J Invest Dermatol 116:136–143

    Article  PubMed  CAS  Google Scholar 

  25. Kalajzic I, Kalajzic Z, Kaliterna M, Gronowicz G, Clark SH, Lichtler AC, Rowe D (2002) Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res 17:15–25

    Article  PubMed  CAS  Google Scholar 

  26. Kalajzic I, Staal A, Yang WP, Wu Y, Johnson SE, Feyen JH, Krueger W, Maye P, Yu F, Zhao Y, Kuo L, Gupta RR, Achenie LE, Wang HW, Shin DG, Rowe DW (2005) Expression profile of osteoblast lineage at defined stages of differentiation. J Biol Chem 280:24618–24626

    Article  PubMed  CAS  Google Scholar 

  27. Wang YH, Liu Y, Buhl K, Rowe DW (2005) Comparison of the action of transient and continuous PTH on primary osteoblast cultures expressing differentiation stage-specific GFP. J Bone Miner Res 20:5–14

    Article  PubMed  Google Scholar 

  28. Christner PJ, Peters J, Hawkins D, Siracusa LD, Jimenez SA (1995) The tight skin 2 mouse. An animal model of scleroderma displaying cutaneous fibrosis and mononuclear cell infiltration. Arthritis Rheum 38:1791–1798

    Article  PubMed  CAS  Google Scholar 

  29. Peters J, Ball ST (1986) Tight skin−2 (Tsk2). Mouse News Lett 74:91–92

    Google Scholar 

  30. McLeod MJ (1980) Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology 22:299–301

    Article  PubMed  CAS  Google Scholar 

  31. Jiang X, Kalajzic Z, Maye P, Braut A, Bellizzi J, Mina M, Rowe DW (2005) Histological analysis of GFP expression in murine bone. J Histochem Cytochem 53:593–602

    Article  PubMed  CAS  Google Scholar 

  32. Genovese C, Rowe D, Kream B (1984) Construction of DNA sequences complementary to rat alpha 1 and alpha 2 collagen mRNA and their use in studying the regulation of type I collagen synthesis by 1,25-dihydroxyvitamin D. Biochemistry 23:6210–6216

    Article  PubMed  CAS  Google Scholar 

  33. Celeste AJ, Rosen V, Buecker JL, Kriz R, Wang EA, Wozney JM (1986) Isolation of the human gene for bone gla protein utilizing mouse and rat cDNA clones. EMBO J 5:1885–1890

    PubMed  CAS  Google Scholar 

  34. Young MF, Ibaraki K, Kerr JM, Lyu MS, Kozak CA (1994) Murine bone sialoprotein (BSP): cDNA cloning, mRNA expression, and genetic mapping. Mamm Genome 5:108–111

    Article  PubMed  CAS  Google Scholar 

  35. Pannu J, Gardner H, Shearstone JR, Smith E, Trojanowska M (2006) Increased levels of transforming growth factor beta receptor type I and up-regulation of matrix gene program: a model of scleroderma. Arthritis Rheum 54:3011–3021

    Article  PubMed  CAS  Google Scholar 

  36. Ramirez F, Sakai LY, Dietz HC, Rifkin DB (2004) Fibrillin microfibrils: multipurpose extracellular networks in organismal physiology. Physiol Genomics 19:151–154

    Article  PubMed  CAS  Google Scholar 

  37. Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, Biery NJ, Dietz HC, Sakai LY, Ramirez F (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 96:3819–3823

    Article  PubMed  CAS  Google Scholar 

  38. Moura B, Tubach F, Sulpice M, Boileau C, Jondeau G, Muti C, Chevallier B, Ounnoughene Y, Le Parc JM (2006) Bone mineral density in Marfan syndrome. A large case-control study. Joint Bone Spine 73:733–735

    Article  PubMed  Google Scholar 

  39. Jones KB, Sponseller PD, Erkula G, Sakai L, Ramirez F, Dietz HC 3rd, Kost-Byerly S, Bridwell KH, Sandell L (2007) Symposium on the musculoskeletal aspects of Marfan syndrome: meeting report and state of the science. J Orthop Res 25:413–422

    Google Scholar 

  40. Pablos JL, Carreira PE, Serrano L, Del Castillo P, Gomez-Reino JJ (1997) Apoptosis and proliferation of fibroblasts during postnatal skin development and scleroderma in the tight-skin mouse. J Histochem Cytochem 45:711–719

    PubMed  CAS  Google Scholar 

  41. Rossi GA, Hunninghake GW, Szapiel SV, Gadek JE, Fulmer JD, Kawanami O, Ferrans VJ, Crystal RG (1980) The tight-skin mouse: an animal model of inherited emphysema. Bull Eur Physiopathol Respir 16(suppl):157–166

    PubMed  Google Scholar 

  42. Szapiel SV, Fulmer JD, Hunninghake GW, Elson NA, Kawanami O, Ferrans VJ, Crystal RG (1981) Hereditary emphysema in the tight-skin (Tsk/+) mouse. Am Rev Respir Dis 123:680–685

    PubMed  CAS  Google Scholar 

  43. Rossi GA, Hunninghake GW, Gadek JE, Szapiel SV, Kawanami O, Ferrans VJ, Crystal RG (1984) Hereditary emphysema in the tight-skin mouse. Evaluation of pathogenesis. Am Rev Respir Dis 129:850–855

    PubMed  CAS  Google Scholar 

  44. Hall JR, Pyeritz RE, Dudgeon DL, Haller JA Jr (1984) Pneumothorax in the Marfan syndrome: prevalence and therapy. Ann Thorac Surg 37:500–504

    Article  PubMed  CAS  Google Scholar 

  45. Wood JR, Bellamy D, Child AH, Citron KM (1984) Pulmonary disease in patients with Marfan syndrome. Thorax 39:780–784

    Article  PubMed  CAS  Google Scholar 

  46. Sgonc R (1999) The vascular perspective of systemic sclerosis: of chickens, mice and men. Int Arch Allergy Immunol 120:169–176

    Article  PubMed  CAS  Google Scholar 

  47. Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR, Ono R, Reinhardt DP, Sakai LY, Biery NJ, Bunton T, Dietz HC, Ramirez F (1997) Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 17:218–222

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. David Rowe and Alexander Lichtler for making the pOBCol2.3GFP transgenic mice available to us for these studies. We also thank Drs. Barbara Kream, Joseph Lorenzo, and David Rowe for critical reading of this manuscript. This work was supported in part by a grant from the National Institutes of Health (NIAMS AR048082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barisic-Dujmovic, T., Boban, I., Adams, D.J. et al. Marfan-Like Skeletal Phenotype in the Tight Skin (Tsk) Mouse. Calcif Tissue Int 81, 305–315 (2007). https://doi.org/10.1007/s00223-007-9059-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9059-4

Keywords

Navigation