Abstract
The amount of bone and the trabecular microarchitecture are two determinants of bone strength which can be quantified by bone histomorphometry. Among the parameters of bone microarchitecture, the Euler number developed in our laboratory (E strut.cavity ) and trabecular bone pattern factor (TBPf) evaluate the connectivity and complexity independently of the bone quantity, and the speed of sound (SOS) measured by quantitative ultrasound (QUS) corroborates E strut.cavity . The aim of the present study was to validate E strut.cavity , TBPf, and SOS as parameters of bone microarchitecture and their contribution to bone strength. We examined 20 right os calcis taken after necropsy in 11 males and 9 females, aged 52–95 years. At the same anatomic location, we measured SOS and broadband ultrasound attenuation (BUA) using a Hologic Sahara device and bone mineral density (BMD) using a Hologic QDR 1000W. At this site a transcortical cylinder was cut for both apparent density measurement (Ap.Dens) and biomechanical tests (maximum compressive stress (σmax) and Young’s modulus (E)), and histomorphometry was performed with an automatic image analyzer (Visiolab, Explora Nova, France). E and σmax were significantly correlated with the parameters of bone quantity, microarchitecture, and QUS. However, after adjustment for the bone quantity, E correlated only with E strut.cavity , TBPf, and SOS, and σmax with BUA. In conclusion, the bone connectivity and complexity evaluated by E strut.cavity and TBPf contribute to bone strength, independently of the bone quantity. The bone mechanical properties may be assessed, in os calcis, in the elastic domain by SOS and in the plastic domain by BUA.
Similar content being viewed by others
References
Ammann P (2003) Determining factors of bone mechanical resistance. Therapie 58:403–407
Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14:13–18
Bouxsein ML (2004) Bone quality: Where do we go from here? Osteoporos Int 14(Suppl 5):S118–S127
Bruce MR, Sharkey NA (2001) Mechanical effects of post-mortem changes, preservation, and allograft bone treatments. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC Press, Boca Raton, FL pp 20–24
Chappard D, Legrand E, Basle MF, Fromont P, Racineux JL, Rebel A, Audran M (1996) Altered trabecular architecture induced by corticosteroids: A bone histomorphometric study. J Bone Miner Res 11:676–685
Chappard D, Legrand E, Baslé MF, Audran M (1997) Measuring trabecular bone architecture by image analysis of histological sections. Eur Micros Anal 50:13–15
Chavassieux P, Arlot M, Meunier PJ (2001) Clinical use of bone biopsy. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis, 2nd edn. Academic Press, San Diego, CA, pp 501–509
Cheng S, Njeh CF, Fan B, Cheng X, Hans D, Wang L, Fuerts T, Genant HK (2002) Influence of region of interest and bone size on calcaneal BMD: Implications for the accuracy of quantitative ultrasound assessments at the calcaneus. Br J Radiol 75:59–68
Compston JE (1994) Connectivity of cancellous bone: Assessment and mechanical implications. Bone 15:463-466
Coster M, Chermant JL (1989) Précis d’analyse d’images. Presses du CNRS, Paris, pp 22–27
Croucher PI, Garrahan NJ, Compston JE (1996) Assessment of cancellous bone structure: Comparison of strut analysis, trabecular bone pattern factor and marrow space star volume. J Bone Miner Res 11:955–961
Dalle Carbonare L, Giannini S (2004) Bone microarchitecture as an important determinant of bone strength. J Endocrinol Invest 27:99–105
Dempster DW, Ferguson-Pell MW, Mellish RWK, Cochran GVB, Xie F, Fey C, Horben W, Parisien M, Lindsay R (1993) Relationship between bone structure in the iliac crest and bone structure and strength in the lumbar spine. Osteoporos Int 3:90–96
Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11
Follet H, Boivin G, Rumelhart C, Meunier PJ (2004) The degree of mineralization is a determinant of bone strength: A study on human calcanei. Bone 34:783–789
Follet H, Bruyère-Garnier F, Peyrin F, Roux JP, Arlot ME, Burt-Pichat B, Rumelhart C, Meunier PJ (2005) Relationship between compressive properties of human os calcis cancellous bone and microarchitecture assessed from 2D and 3D synchrotron microtomography. Bone 36:340–351
Garrahan NJ, Mellish RWE, Compston JE (1986) A new method for the two-dimensional analysis of bone structure in human iliac crest biopsies. J Microsc 142:341–349
Genant HK, Engelke K, Fuerst T, Glüer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Non-invasive assessment of bone mineral and structure: State of the art. J Bone Miner Res 11:707–730
Glüer CC, Wu CY, Jergas M, Goldstein SA, Genant HK (1994) Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 55:46–52
Gonnelli S, Cepollaro C, Montagnani A, Martini S, Gennari L, Mangeri M, Gennari C (2002) Heel ultrasonography in monitoring alendronate therapy: A four-year longitudinal study. Osteoporos Int 13:415–421
Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor: A new parameter for simple quantification of bone microarchitecture. Bone 13:327–330
Hans D, Arlot ME, Schott AM, Roux JP, Kotzki PO, Meunier PJ (1995) Do ultrasound measurements on the os calcis reflect more the bone microarchitecture than the bone mass?: A two-dimensional histomorphometric study. Bone 16:295-300
Kang C, Paley M, Ordidge R, Speller R (1999) In vivo MRI measurements of bone quality in the calcaneus: A comparison with DXA and ultrasound. Osteoporos Int 9:65–74
Kaufman JJ, Einhorn TA (1993) Perspectives: Ultrasound assessment of bone. J Bone Miner Res 8:517-525
Legrand E, Chappard D, Pascaretti C, Duquenne M, Rohmer V, Basle MF, Audran M (1999) Trabecular bone microarchitecture and male osteoporosis. Morphologie 83:35–40
Le Ha M, Holmes RE, Shors EC, Rosenstein DA (1992) Computerized quantitative analysis of the interconnectivity of porous biomaterials. Acta Stereol 11:267–272
Leichter I, Margulies JY, Weinreb A, Mizrahi J, Robin GC, Conforty B, Makin M, Bloch B (1982) The relationship between bone density, mineral content, and mechanical strength in the femoral neck. Clin Orthop 163:272–281
Levitz P, Tchoubar D (1992) Disordered porous solids: From chord distributions to small angle scattering. J Phys I France 2:771–790
Mellish RWE, Ferguson-Pell MW, Cochran GVB, Lindsay R, Dempster DW (1991) A new manual method for assessing two-dimensional cancellous bone structure: Comparison between iliac crest and lumbar vertebra. J Bone Miner Res 6:689–696
Meunier PJ (1983) Histomorphometry of the skeleton. In: Peck WA (ed) Bone and mineral research annual: A yearly review of developments in the field of bone and mineral metabolism. Excerpta Medica, Amsterdam, pp 191–222
Mitton D, Rumelhart C, Hans D, Meunier PJ (2001) The effects of density and test conditions on measured compression and shear strength of cancellous bone from the lumbar vertebrae of ewes. Med Eng Phys 1997 19:464–474
Nicholson PHF, Müller R, Cheng XG, Rüegsegger P, Van Der Perre G, Dequeker J, Boonen S (2001) Quantitative ultrasound and trabecular architecture in the human calcaneus. J Bone Miner Res 16:1886–1892
Nicholson PHF, Bouxsein ML (2000) Quantitative ultrasound does not reflect mechanically induced damage in human cancellous bone. J Bone Miner Res 15:2467–2472
Nicholson PHF, Bouxsein ML (2002) Bone marrow influences quantitative ultrasound measurements in human cancellous bone. Ultrasound Med Biol 28:369–375
Njeh CF, Hans D, Wu C, Kantorovich E, Sister M, Fuerst T, Genant HK (1999) An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen. Med Eng Phys 21:651–659
Njeh CF, Fuerst T, Diessel E, Genant HK (2001) Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int 12:1–15
Njeh CF, Saeed I, Grigorian M, Kendler DL, Fan B, Shepherd J, McClung M, Drake WM, Genant HK (2001) Assessment of bone status using speed of sound at multiple anatomical sites. Ultrasound Med Biol 27:1337–1345
Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328
Parfitt A, Mathews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis: Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409
Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: Standardization of nomenclature, symbols and units. J Bone Miner Res 2:595–610
Portero NR, Arlot ME, Roux JP, Duboeuf F, Meunier PJ (2000) Do quantitative ultrasounds reflect microarchitecture in human os calcis?. J Bone Miner Res 15:808
Portero NR, Arlot ME, Roux JP, Duboeuf F, Chavassieux PM, Meunier PJ (2005) Evaluation and development of automatic 2-D measurements of histomorphometric parameters reflecting trabecular bone connectivity. Correlations with dual-energy x-ray absorptiometry and quantitative ultrasound in human calcaneum. Calcif Tissue Int 77:195–204
Szucs J, Jonson R, Granhed H, Hansson T (1992) Accuracy, precision and homogeneity effects in the determination of the bone mineral content with dual photon absorptiometry in the heel bone. Bone 13:179–183
Thomsen JS, Ebbesen EN, Mosekilde LI (1998) Relationships between static histomorphometry and bone strength measurements in human iliac crest bone biopsies. Bone 22:153–163
Thomsen JS, Ebbesen EN, Mosekilde Li (2002) Predicting human vertebral bone strength by vertebral static histomorphometry. Bone 30:502–508
Trebacz H, Natali A (1999) Ultrasound velocity and attenuation in cancellous bone samples from lumbar vertebra and calcaneus. Osteoporos Int 9:99–105
Tribl B, Vogelsang H, Pohanka E, Grampp S, Gangl A, Hörl WH (1998) Broadband ultrasound attenuation of the calcaneus: A tool for assessing bone status in patients with chronic renal failure. Acta Radiol 39:637–641
Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: A tutorial. Bone 14:595–608
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Portero-Muzy, N.R., Chavassieux, P.M., Mitton, D. et al. Euler strut.cavity , a New Histomorphometric Parameter of Connectivity Reflects Bone Strength and Speed of Sound in Trabecular Bone from Human Os Calcis. Calcif Tissue Int 81, 92–98 (2007). https://doi.org/10.1007/s00223-007-9044-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00223-007-9044-y