Skip to main content

Advertisement

Log in

Euler strut.cavity , a New Histomorphometric Parameter of Connectivity Reflects Bone Strength and Speed of Sound in Trabecular Bone from Human Os Calcis

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The amount of bone and the trabecular microarchitecture are two determinants of bone strength which can be quantified by bone histomorphometry. Among the parameters of bone microarchitecture, the Euler number developed in our laboratory (E strut.cavity ) and trabecular bone pattern factor (TBPf) evaluate the connectivity and complexity independently of the bone quantity, and the speed of sound (SOS) measured by quantitative ultrasound (QUS) corroborates E strut.cavity . The aim of the present study was to validate E strut.cavity , TBPf, and SOS as parameters of bone microarchitecture and their contribution to bone strength. We examined 20 right os calcis taken after necropsy in 11 males and 9 females, aged 52–95 years. At the same anatomic location, we measured SOS and broadband ultrasound attenuation (BUA) using a Hologic Sahara device and bone mineral density (BMD) using a Hologic QDR 1000W. At this site a transcortical cylinder was cut for both apparent density measurement (Ap.Dens) and biomechanical tests (maximum compressive stress (σmax) and Young’s modulus (E)), and histomorphometry was performed with an automatic image analyzer (Visiolab, Explora Nova, France). E and σmax were significantly correlated with the parameters of bone quantity, microarchitecture, and QUS. However, after adjustment for the bone quantity, E correlated only with E strut.cavity , TBPf, and SOS, and σmax with BUA. In conclusion, the bone connectivity and complexity evaluated by E strut.cavity and TBPf contribute to bone strength, independently of the bone quantity. The bone mechanical properties may be assessed, in os calcis, in the elastic domain by SOS and in the plastic domain by BUA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ammann P (2003) Determining factors of bone mechanical resistance. Therapie 58:403–407

    Article  PubMed  Google Scholar 

  2. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14:13–18

    Article  Google Scholar 

  3. Bouxsein ML (2004) Bone quality: Where do we go from here? Osteoporos Int 14(Suppl 5):S118–S127

    Google Scholar 

  4. Bruce MR, Sharkey NA (2001) Mechanical effects of post-mortem changes, preservation, and allograft bone treatments. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC Press, Boca Raton, FL pp 20–24

    Google Scholar 

  5. Chappard D, Legrand E, Basle MF, Fromont P, Racineux JL, Rebel A, Audran M (1996) Altered trabecular architecture induced by corticosteroids: A bone histomorphometric study. J Bone Miner Res 11:676–685

    PubMed  CAS  Google Scholar 

  6. Chappard D, Legrand E, Baslé MF, Audran M (1997) Measuring trabecular bone architecture by image analysis of histological sections. Eur Micros Anal 50:13–15

    Google Scholar 

  7. Chavassieux P, Arlot M, Meunier PJ (2001) Clinical use of bone biopsy. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis, 2nd edn. Academic Press, San Diego, CA, pp 501–509

    Google Scholar 

  8. Cheng S, Njeh CF, Fan B, Cheng X, Hans D, Wang L, Fuerts T, Genant HK (2002) Influence of region of interest and bone size on calcaneal BMD: Implications for the accuracy of quantitative ultrasound assessments at the calcaneus. Br J Radiol 75:59–68

    PubMed  CAS  Google Scholar 

  9. Compston JE (1994) Connectivity of cancellous bone: Assessment and mechanical implications. Bone 15:463-466

    Article  PubMed  CAS  Google Scholar 

  10. Coster M, Chermant JL (1989) Précis d’analyse d’images. Presses du CNRS, Paris, pp 22–27

  11. Croucher PI, Garrahan NJ, Compston JE (1996) Assessment of cancellous bone structure: Comparison of strut analysis, trabecular bone pattern factor and marrow space star volume. J Bone Miner Res 11:955–961

    PubMed  CAS  Google Scholar 

  12. Dalle Carbonare L, Giannini S (2004) Bone microarchitecture as an important determinant of bone strength. J Endocrinol Invest 27:99–105

    PubMed  CAS  Google Scholar 

  13. Dempster DW, Ferguson-Pell MW, Mellish RWK, Cochran GVB, Xie F, Fey C, Horben W, Parisien M, Lindsay R (1993) Relationship between bone structure in the iliac crest and bone structure and strength in the lumbar spine. Osteoporos Int 3:90–96

    Article  PubMed  CAS  Google Scholar 

  14. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11

    PubMed  CAS  Google Scholar 

  15. Follet H, Boivin G, Rumelhart C, Meunier PJ (2004) The degree of mineralization is a determinant of bone strength: A study on human calcanei. Bone 34:783–789

    Article  PubMed  CAS  Google Scholar 

  16. Follet H, Bruyère-Garnier F, Peyrin F, Roux JP, Arlot ME, Burt-Pichat B, Rumelhart C, Meunier PJ (2005) Relationship between compressive properties of human os calcis cancellous bone and microarchitecture assessed from 2D and 3D synchrotron microtomography. Bone 36:340–351

    Article  PubMed  CAS  Google Scholar 

  17. Garrahan NJ, Mellish RWE, Compston JE (1986) A new method for the two-dimensional analysis of bone structure in human iliac crest biopsies. J Microsc 142:341–349

    PubMed  CAS  Google Scholar 

  18. Genant HK, Engelke K, Fuerst T, Glüer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Non-invasive assessment of bone mineral and structure: State of the art. J Bone Miner Res 11:707–730

    PubMed  CAS  Google Scholar 

  19. Glüer CC, Wu CY, Jergas M, Goldstein SA, Genant HK (1994) Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 55:46–52

    Article  PubMed  Google Scholar 

  20. Gonnelli S, Cepollaro C, Montagnani A, Martini S, Gennari L, Mangeri M, Gennari C (2002) Heel ultrasonography in monitoring alendronate therapy: A four-year longitudinal study. Osteoporos Int 13:415–421

    Article  PubMed  CAS  Google Scholar 

  21. Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor: A new parameter for simple quantification of bone microarchitecture. Bone 13:327–330

    Article  PubMed  CAS  Google Scholar 

  22. Hans D, Arlot ME, Schott AM, Roux JP, Kotzki PO, Meunier PJ (1995) Do ultrasound measurements on the os calcis reflect more the bone microarchitecture than the bone mass?: A two-dimensional histomorphometric study. Bone 16:295-300

    Article  PubMed  CAS  Google Scholar 

  23. Kang C, Paley M, Ordidge R, Speller R (1999) In vivo MRI measurements of bone quality in the calcaneus: A comparison with DXA and ultrasound. Osteoporos Int 9:65–74

    Article  PubMed  CAS  Google Scholar 

  24. Kaufman JJ, Einhorn TA (1993) Perspectives: Ultrasound assessment of bone. J Bone Miner Res 8:517-525

    PubMed  CAS  Google Scholar 

  25. Legrand E, Chappard D, Pascaretti C, Duquenne M, Rohmer V, Basle MF, Audran M (1999) Trabecular bone microarchitecture and male osteoporosis. Morphologie 83:35–40

    PubMed  CAS  Google Scholar 

  26. Le Ha M, Holmes RE, Shors EC, Rosenstein DA (1992) Computerized quantitative analysis of the interconnectivity of porous biomaterials. Acta Stereol 11:267–272

    Google Scholar 

  27. Leichter I, Margulies JY, Weinreb A, Mizrahi J, Robin GC, Conforty B, Makin M, Bloch B (1982) The relationship between bone density, mineral content, and mechanical strength in the femoral neck. Clin Orthop 163:272–281

    PubMed  Google Scholar 

  28. Levitz P, Tchoubar D (1992) Disordered porous solids: From chord distributions to small angle scattering. J Phys I France 2:771–790

    Article  CAS  Google Scholar 

  29. Mellish RWE, Ferguson-Pell MW, Cochran GVB, Lindsay R, Dempster DW (1991) A new manual method for assessing two-dimensional cancellous bone structure: Comparison between iliac crest and lumbar vertebra. J Bone Miner Res 6:689–696

    Article  PubMed  CAS  Google Scholar 

  30. Meunier PJ (1983) Histomorphometry of the skeleton. In: Peck WA (ed) Bone and mineral research annual: A yearly review of developments in the field of bone and mineral metabolism. Excerpta Medica, Amsterdam, pp 191–222

    Google Scholar 

  31. Mitton D, Rumelhart C, Hans D, Meunier PJ (2001) The effects of density and test conditions on measured compression and shear strength of cancellous bone from the lumbar vertebrae of ewes. Med Eng Phys 1997 19:464–474

    Article  Google Scholar 

  32. Nicholson PHF, Müller R, Cheng XG, Rüegsegger P, Van Der Perre G, Dequeker J, Boonen S (2001) Quantitative ultrasound and trabecular architecture in the human calcaneus. J Bone Miner Res 16:1886–1892

    Article  PubMed  CAS  Google Scholar 

  33. Nicholson PHF, Bouxsein ML (2000) Quantitative ultrasound does not reflect mechanically induced damage in human cancellous bone. J Bone Miner Res 15:2467–2472

    Article  PubMed  CAS  Google Scholar 

  34. Nicholson PHF, Bouxsein ML (2002) Bone marrow influences quantitative ultrasound measurements in human cancellous bone. Ultrasound Med Biol 28:369–375

    Article  PubMed  Google Scholar 

  35. Njeh CF, Hans D, Wu C, Kantorovich E, Sister M, Fuerst T, Genant HK (1999) An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen. Med Eng Phys 21:651–659

    Article  PubMed  CAS  Google Scholar 

  36. Njeh CF, Fuerst T, Diessel E, Genant HK (2001) Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int 12:1–15

    PubMed  CAS  Google Scholar 

  37. Njeh CF, Saeed I, Grigorian M, Kendler DL, Fan B, Shepherd J, McClung M, Drake WM, Genant HK (2001) Assessment of bone status using speed of sound at multiple anatomical sites. Ultrasound Med Biol 27:1337–1345

    Article  PubMed  CAS  Google Scholar 

  38. Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328

    Article  PubMed  CAS  Google Scholar 

  39. Parfitt A, Mathews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis: Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409

    Article  PubMed  CAS  Google Scholar 

  40. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: Standardization of nomenclature, symbols and units. J Bone Miner Res 2:595–610

    PubMed  CAS  Google Scholar 

  41. Portero NR, Arlot ME, Roux JP, Duboeuf F, Meunier PJ (2000) Do quantitative ultrasounds reflect microarchitecture in human os calcis?. J Bone Miner Res 15:808

    Google Scholar 

  42. Portero NR, Arlot ME, Roux JP, Duboeuf F, Chavassieux PM, Meunier PJ (2005) Evaluation and development of automatic 2-D measurements of histomorphometric parameters reflecting trabecular bone connectivity. Correlations with dual-energy x-ray absorptiometry and quantitative ultrasound in human calcaneum. Calcif Tissue Int 77:195–204

    Article  PubMed  CAS  Google Scholar 

  43. Szucs J, Jonson R, Granhed H, Hansson T (1992) Accuracy, precision and homogeneity effects in the determination of the bone mineral content with dual photon absorptiometry in the heel bone. Bone 13:179–183

    Article  PubMed  CAS  Google Scholar 

  44. Thomsen JS, Ebbesen EN, Mosekilde LI (1998) Relationships between static histomorphometry and bone strength measurements in human iliac crest bone biopsies. Bone 22:153–163

    Article  PubMed  CAS  Google Scholar 

  45. Thomsen JS, Ebbesen EN, Mosekilde Li (2002) Predicting human vertebral bone strength by vertebral static histomorphometry. Bone 30:502–508

    Article  PubMed  CAS  Google Scholar 

  46. Trebacz H, Natali A (1999) Ultrasound velocity and attenuation in cancellous bone samples from lumbar vertebra and calcaneus. Osteoporos Int 9:99–105

    Article  PubMed  CAS  Google Scholar 

  47. Tribl B, Vogelsang H, Pohanka E, Grampp S, Gangl A, Hörl WH (1998) Broadband ultrasound attenuation of the calcaneus: A tool for assessing bone status in patients with chronic renal failure. Acta Radiol 39:637–641

    Article  PubMed  CAS  Google Scholar 

  48. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: A tutorial. Bone 14:595–608

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie R. Portero-Muzy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portero-Muzy, N.R., Chavassieux, P.M., Mitton, D. et al. Euler strut.cavity , a New Histomorphometric Parameter of Connectivity Reflects Bone Strength and Speed of Sound in Trabecular Bone from Human Os Calcis. Calcif Tissue Int 81, 92–98 (2007). https://doi.org/10.1007/s00223-007-9044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9044-y

Keywords

Navigation