Skip to main content

Advertisement

Log in

Carbonate Assignment and Calibration in the Raman Spectrum of Apatite

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

A series of apatites with varying carbonate levels was prepared in order to assign the carbonate bands and calibrate for Raman analysis of natural materials. Overlap of carbonate bands with phosphate peaks was resolved by curve fitting. A peak at 1,071 cm−1 was assigned to a combination of the carbonate ν1 mode at 1,070 cm−1 with a phosphate ν3 mode at 1,076 cm−1. In addition, the carbonate ν4 mode was identified in apatite samples with >4% carbonate. The carbonate ν4 bands at 715 and 689 cm−1 identify the samples as B-type carbonated apatite. The carbonate content of apatite was calibrated to a carbonate Raman band, and the method was used to determine the carbonate content of a sample of bovine cortical bone, 7.7 ± 0.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238

    Article  PubMed  CAS  Google Scholar 

  2. Cho GY, Wu YT, Ackerman JL (2003) Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300:1123–1127

    Article  PubMed  CAS  Google Scholar 

  3. Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues. J Biomed Optics 5:259–268

    Article  CAS  Google Scholar 

  4. Tarnowski CP, Ignelzi MA, Morris MD (2002) Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res 17:1118–1126

    Article  PubMed  Google Scholar 

  5. Rey C, Renugopalakrishnan V, Collins B, Glimcher MJ (1991) Fourier-transform infrared spectroscopic study of the carbonate ions in bone-mineral during aging. Calcif Tissue Int 49:251–258

    Article  PubMed  CAS  Google Scholar 

  6. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487

    PubMed  CAS  Google Scholar 

  7. Timlin JA, Carden A, Morris MD (1999) Chemical microstructure of cortical bone probed by Raman transects. Appl Spectrosc 53:1429–1435

    Article  CAS  Google Scholar 

  8. Ou-Yang H, Paschalis EP, Mayo WE, Boskey AL, Mendelsohn R (2001) Infrared microscopic imaging of bone: spatial distribution of CO 2−3 . J Bone Miner Res 16:893–900

    Article  PubMed  CAS  Google Scholar 

  9. Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB (2003) Aging of microstructural compartments in human compact bone. J Bone Miner Res 18:1012–1019

    Article  PubMed  CAS  Google Scholar 

  10. McCreadie BR, Morris MD, Chen TC, Rao DS, Finney WF, Widjaja E, Goldstein SA (2006) Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39:1190–1195

    Article  PubMed  CAS  Google Scholar 

  11. Elfeki H, Rey C, Vignoles M (1991) Carbonate ions in apatites - infrared investigations in the ν4 CO3 domain. Calcif Tissue Int 49:269–274

    Article  CAS  Google Scholar 

  12. Apfelbaum F, Diab H, Mayer I, Featherstone JDB (1992) An FTIR study of carbonate in synthetic apatites. J Inorg Biochem 45:277–282

    Article  CAS  Google Scholar 

  13. Featherstone JDB, Pearson S, Legeros RZ (1984) An infrared method for quantification of carbonate in carbonated apatites. Caries Res 18:63–66

    Article  PubMed  CAS  Google Scholar 

  14. Krajewski A, Mazzocchi M, Buldini PL, Ravaglioli A, Tinti A, Taddei P, Fagnano C (2005) Synthesis of carbonated hydroxyapatites: efficiency of the substitution and critical evaluation of analytical methods. J Mol Struct 744:221–228

    Article  CAS  Google Scholar 

  15. Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481

    Article  PubMed  CAS  Google Scholar 

  16. Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MMJ, Beck LW (2006) Three structural roles for water in bone observed by solid-state NMR. Biophys J 90:3722–3731

    Article  PubMed  CAS  Google Scholar 

  17. Penel G, Leroy G, Rey C, Sombret B, Huvenne JP, Bres E (1997) Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and hydroxy-apatite powders. J Mater Sci Mater Med 8:271–276

    Article  PubMed  CAS  Google Scholar 

  18. Nelson DGA, Williamson BE (1982) Low-temperature laser Raman-spectroscopy of synthetic carbonated apatites and dental enamel. Aust J Chem 35:715–727

    Article  CAS  Google Scholar 

  19. Markovic M, Fowler BO, Tung MS (2004) Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J Res Natl Inst Stand Technol 109:553–568

    CAS  Google Scholar 

  20. Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143

    Article  CAS  Google Scholar 

  21. Nelson DGA, Featherstone JDB (1982) Preparation, analysis, and characterization of carbonated apatites. Calcif Tissue Int 34:S69–S81

    PubMed  Google Scholar 

  22. Markovic M, Tung MS, Fowler BO, Cline JP (1997) Certificate of analysis, standard reference material 2910, calcium hydroxyapatite. National Institute of Standards and Technology, Gaithersburg, MD, 20899

    Google Scholar 

  23. Nishino M, Yamashita S, Aoba T, Okazaki M, Moriwaki Y (1981) The laser-Raman spectroscopic studies on human-enamel and precipitated carbonate-containing apatites. J Dent Res 60:751–755

    PubMed  CAS  Google Scholar 

  24. Penel G, Delfosse C, Descamps M, Leroy G (2005) Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36:893–901

    Article  PubMed  CAS  Google Scholar 

  25. Elliott JC (2002) Calcium phosphate biominerals. In: Kohn M, Rakovan Y, Hughes Y (eds) Phosphates – Geochemical, Geobiological, and Materials Importance. Mineralogical Society of America, Washington, DC, pp 427–453

    Google Scholar 

  26. Stewart S, Shea DA, Tarnowski CP, Morris MD, Wang D, Franceschi R, Lin DL, Keller E (2002) Trends in early mineralization of murine calvarial osteoblastic cultures: a Raman microscopic study. J Raman Spectrosc 33:536–543

    Article  CAS  Google Scholar 

  27. Rehman I, Smith R, Hench LL, Bonfield W (1995) Structural evaluation of human and sheep bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy. J Biomed Mater Res 29:1287–1294

    Article  PubMed  CAS  Google Scholar 

  28. Fleet ME, Liu XY, King PL (2004) Accommodation of the carbonate ion in apatite: an FTIR and X-ray structure study of crystals synthesized at 2–4 GPa. Am Miner 89:1422–1432

    CAS  Google Scholar 

  29. Freeman JJ, Wopenka B, Silva MJ, Pasteris JD (2001) Raman spectroscopic detection of changes in bioapatite in mouse femora as a function of age and in vitro fluoride treatment. Calcif Tissue Int 68:156–162

    Article  PubMed  CAS  Google Scholar 

  30. Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL (2001) Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem 160:340–349

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Our appreciation goes to Robert Buckland who prepared some of the apatite samples. This work was supported in part by NIH grant R01 AR47969.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary M. J. Tecklenburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awonusi, A., Morris, M.D. & Tecklenburg, M.M.J. Carbonate Assignment and Calibration in the Raman Spectrum of Apatite. Calcif Tissue Int 81, 46–52 (2007). https://doi.org/10.1007/s00223-007-9034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9034-0

Keywords

Navigation