Skip to main content

Advertisement

Log in

Altered Collagen in Tartrate-Resistant Acid Phosphatase (TRAP)-Deficient Mice: A Role for TRAP in Bone Collagen Metabolism

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Tartrate-resistant acid phosphatase (TRAP) is an iron-containing protein that is highly expressed by osteoclasts, macrophages, and dendritic cells. The enzyme is secreted by osteoclasts during bone resorption, and serum TRAP activity correlates with resorptive activity in disorders of bone metabolism. TRAP is essential for normal skeletal development. In knockout mice lacking TRAP, bone shape and modeling is altered with increased mineral density. Here, we report the effect of TRAP on the biochemical and biomechanical properties of collagen, the major protein constituting the bone matrix, using these mice. Femurs from TRAP-/- and wild-type mice were used in these studies. The biomechanical properties were investigated using a three-point bending technique. Collagen synthesis was determined by measuring cross-link content using high-performance liquid chromatography and amino acid analysis. Collagen degradation was determined by measuring matrix metalloproteinase-2 (MMP-2) activity. The rates of collagen synthesis and degradation were significantly greater in bones from TRAP-/- mice compared with wild type. At 8 weeks, there was an increase in the intermediate cross-links but no significant difference in animals aged 6 months. There was a significant increase in mature cross-links at both ages. A significant increase in MMP-2 production both pro and active was observed. A significant increase in ultimate stress and Young’s modulus of elasticity was needed to fracture the bones from mice deficient in TRAP. We conclude that both synthesis as well as degradation of collagen are increased when TRAP is absent in mice at 8 weeks and 6 months of age, showing that TRAP has an important role in the metabolism of collagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tzaphlidou M (2005) The role of collagen in bone structure: an image processing approach. Micron 36:593–601

    Article  PubMed  CAS  Google Scholar 

  2. Ottani V, Raspanti M, Ruggeri A (2001) Collagen structure and functional implications. Micron 32:251–260

    Article  PubMed  CAS  Google Scholar 

  3. Christoffersen J, Landis WJ (1991) A contribution with review to the description of mineralization of bone and other calcified tissues in vivo. Anat Rec 230:435–450

    Article  PubMed  CAS  Google Scholar 

  4. Jones SJ, Boyde A (1974) The organization and gross mineralization patterns of the collagen fibers in Sharpey fiber bone. Cell Tissue Res 148:83–96

    Article  PubMed  CAS  Google Scholar 

  5. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17:319–336

    Article  PubMed  CAS  Google Scholar 

  6. Song F, Wisithphrom K, Zhou J, Windsor LJ (2006) Matrix metalloproteinase dependent and independent collagen degradation. Front Biosci 11:3100–3120

    Article  PubMed  CAS  Google Scholar 

  7. Everts V, Hou WS, Rialland X, Tigchelaar W, Saftig P, Bromme D, Gelb BD, Beertsen W (2003) Cathepsin K deficiency in pycnodysostosis results in accumulation of non-digested phagocytosed collagen in fibroblasts. Calcif Tissue Int 73:380–386

    Article  PubMed  CAS  Google Scholar 

  8. Burstone MS (1959) Histochemical demonstration of acid phosphatase activity in osteoclasts. J Histochem Cytochem 7:39–41

    PubMed  CAS  Google Scholar 

  9. Minkin C (1982) Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 34:285–290

    Article  PubMed  CAS  Google Scholar 

  10. Lau KH, Baylink DJ (2003) Osteoblastic tartrate-resistant acid phosphatase: its potential role in the molecular mechanism of osteogenic action of fluoride. J Bone Miner Res 18:1897–1900

    Article  PubMed  CAS  Google Scholar 

  11. Perez-Amodio S, Vogels IMC, Schoenmaker T, Jansen DC, Alatalo SL, Halleen JM, Beertsen W, Everts V (2005) Endogenous expression and endocytosis of tartrate-resistant acid phosphatase (TRAP) by osteoblast-like cells. Bone 36:1065–1077

    Article  PubMed  CAS  Google Scholar 

  12. Lord DK, Cross NCP, Bevilaqua MA, Rider SH, Gorman PA, Groves AV, Moss DW, Sheer D, Cox TM (1990) Type 5 acid phosphatase. Sequence, expression and chromosomal localization of a differentiation-associated protein of the human macrophage. Eur J Biochem 189:287–293

    Article  PubMed  CAS  Google Scholar 

  13. Hayman AR, Bune AJ, Bradley JR, Rashbass J, Cox TM (2000) Osteoclastic tartrate-resistant acid phosphatase (Acp 5): its localization to dendritic cells and diverse murine tissues. J Histochem Cytochem 48:219–227

    PubMed  CAS  Google Scholar 

  14. Hayman AR, Macary P, Lehner PJ, Cox TM (2001) Tartrate-resistant acid phosphatase (Acp 5): identification in diverse human tissues and dendritic cells. J Histochem Cytochem 49:675–683

    PubMed  CAS  Google Scholar 

  15. Kirstein B, Chambers TJ, Fuller K (2006) Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behaviour. J Cellular Biochem 98:1085–1094.

    Article  CAS  Google Scholar 

  16. Lau KH, Onishi T, Wergedal JE, Singer FR, Baylink DJ (1987) Characterisation and assay of tartrate-resistant acid phosphatase activity in serum: potential use to assess bone resorption. Clin Chem 33:458–462

    PubMed  CAS  Google Scholar 

  17. Chamberlain P, Compston J, Cox TM, Hayman AR, Imrie RC, Reynolds K, Holmes SD (1995) Generation and characterization of monoclonal antibodies to human type-5 tartrate-resistant acid phosphatase: development of a specific immunoassay of the isozyme in serum. Clin Chem 41:1495–1499

    PubMed  CAS  Google Scholar 

  18. Hayman AR, Dryden AJ, Chambers TJ, Warburton MJ (1991) Tartrate-resistant acid phosphatase from human osteoclastomas is translated as a single polypeptide. Biochem J 277:631–634

    PubMed  CAS  Google Scholar 

  19. Reddy SV, Hundley JE, Windle JJ, Alcantara O, Linn R, Leach RJ, Boldt DH, Roodman GD (1995) Characterisation of the mouse tartrate-resistant acid phosphatase (TRAP) gene promoter. J Bone Miner Res 10:601–606

    Article  PubMed  CAS  Google Scholar 

  20. Angel NZ, Walsh N, Forwood MR, Ostrowski MC, Cassady AI, Hume DA (2000) Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. J Bone Miner Res 15:103–110

    Article  PubMed  CAS  Google Scholar 

  21. Hayman AR, Bune AJ, Cox TM (2000) Widespread expression of tartrate-resistant acid phosphatase (Acp 5) in the mouse embryo. J Anat 196:433–441

    Article  PubMed  CAS  Google Scholar 

  22. Lang P, Schultzberg M, Andersson G (2001) Expression and distribution of tartrate-resistant purple acid phosphatase in the rat nervous system. J Histochem Cytochem 49:379–396

    PubMed  CAS  Google Scholar 

  23. Ljusberg J, Ek-Rylander B, Andersson G (2000) Tartrate-resistant purple acid phosphatase is synthesised as a proenzyme and activated by cysteine proteinases. Biochem J 343:63–69

    Article  Google Scholar 

  24. Lang P, Andersson G (2005) Differential expression of monomeric and proteolytically processed forms of tartrate-resistant acid phosphatase in rat tissues. Cell Mol Life Sci 62:905–918

    Article  PubMed  CAS  Google Scholar 

  25. Hayman AR, Warburton MJ, Pringle JAS, Coles B, Chambers TJ (1989) Purification and characterisation of a tartrate-resistant acid phosphatase from human osteoclastomas. Biochem J 261:601–609

    PubMed  CAS  Google Scholar 

  26. Nash K, Feldmuller M, de Jersey J, Alewood P, Hamilton S (1993) Continuous and discontinuous assays for phosphotyrosyl protein phosphatase activity using phosphotyrosyl peptide substrates. Anal Biochem 213:303–309

    Article  PubMed  CAS  Google Scholar 

  27. Ek-Rylander B, Flores M, Wendal M, Heinegard D, Andersson G (1994) Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. Modulation of osteoclast adhesion in vitro. J Biol Chem 269:14853–14856

    PubMed  CAS  Google Scholar 

  28. Suter A, Everts V, Boyde A, Jones SJ, Lullmann-Rauch R, Hartmann D, Hayman AR, Cox TM, Evans MJ, Meister T, von Figura K, Saftig P (2001) Overlapping functions of lysosomal acid phosphatase (LAP) and tartrate-resistant acid phosphatase (Acp5) revealed by doubly deficient mice. Development 128:4899–4910

    PubMed  CAS  Google Scholar 

  29. Saunders PT, Renegar RH, Raub TJ, Baumbach GA, Atkinson PH, Bazer FW, Roberts RM (1985) The carbohydrate structure of porcine uteroferrin and the role of the high mannose chains in promoting uptake by the reticuloendothelial cells of the fetal liver. J Biol Chem 260:3658–3665

    PubMed  CAS  Google Scholar 

  30. Bune AJ, Hayman AR, Evans MJ, Cox TM (2001) Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disordered macrophage inflammatory responses and reduced clearance of the pathogen, Staphylococcus aureus. Immunology 102:103–113

    Article  PubMed  CAS  Google Scholar 

  31. Mitic N, Valizadeh M, Leung EW, de Jersey J, Hamilton S, Hume DA, Cassady AI, Schenk G (2005) Human tartrate-resistant acid phosphatase becomes an effective ATPase upon proteolytic activation. Arch Biochem Biophys 439:154–164

    Article  PubMed  CAS  Google Scholar 

  32. Bazer FW, Worthington-White D, Fliss MF, Gross S (1991) A progesterone-induced hematopoietic growth factor of uterine origin. Exp Hematol 19:910–915

    PubMed  CAS  Google Scholar 

  33. Hayman AR, Cox TM (1994) Purple acid phosphatase of the human osteoclast and macrophage: characterization, molecular properties and crystallization of the recombinant di-iron-oxo protein secreted by baculovirus-infected insect cells. J Biol Chem 269:1294–1300

    PubMed  CAS  Google Scholar 

  34. Halleen JM, Raisanen S, Salo JJ, Reddy SV, Roodman GD, Hentunen TA, Lehenkari PP, Kaija H, Vihko P, Vaananen HK (1999) Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase. J Biol Chem 274:22907–22910

    Article  PubMed  CAS  Google Scholar 

  35. Raisanen SR, Alatalo SL, Ylipahkala H, Halleen JM, Cassady AI, Hume DA, Vaananen HK (2005) Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing. Biochem Biophys Res Commun 331:120–126

    Article  PubMed  CAS  Google Scholar 

  36. Esfandiari E, Bailey M, Stokes C, Cox TM, Evans MJ, Hayman AR (2006) Tartrate-resistant acid phosphatase (TRAP) influences Th1 pathways by affecting dendritic cell function. J Bone Miner Res 21:1367–1376

    Article  PubMed  CAS  Google Scholar 

  37. Hayman AR, Jones SJ, Boyde A, Foster D, Colledge WH, Carlton MB, Evans MJ, Cox TM (1996) Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 122:3151–3162

    PubMed  CAS  Google Scholar 

  38. Hollberg K, Hultenby K, Hayman AR, Cox TM, Andersson G (2002) Osteoclasts from mice deficient in tartrate-resistant acid phosphatase have altered ruffled borders and disturbed intracellular vesicular transport. Exp Cell Res 279:227–238

    Article  PubMed  CAS  Google Scholar 

  39. Sims TJ, Avery NC, Bailey AJ (2000) Quantitative determination of collagen crosslinks. In: Streuli CH, Grant ME (eds), Methods in Molecular Biology: Extracellular Matrix Protocols. Humana Press, Totowa, NJ, pp 11–27

    Chapter  Google Scholar 

  40. Knott L, Whitehead CC, Fleming RH, Bailey AJ (1995) Biochemical changes in the collagenous matrix of osteoporotic avian bone. Biochem J 310:1045–1051

    PubMed  CAS  Google Scholar 

  41. Sims TJ, Bailey AJ (1992) Quantitative analysis of collagen and elastin cross-links using a single column system. J Chromatogr 582:49–55

    Article  PubMed  CAS  Google Scholar 

  42. Scott JE, Hughes EW, Shuttleworth A (1981) An “affinity” method for preparing polypeptides enriched in the collagen-associated Ehrlich chromogen. J Biochem 93:921–925

    Google Scholar 

  43. Bannister DW, Burns AB (1970) Adaptation of the Bergman and Loxley technique for hydroxyproline determination to the autoanalyzer and its use in determining plasma hydroxyproline in the domestic fowl. Analyst 95:596–600

    Article  PubMed  CAS  Google Scholar 

  44. Knott L, Tarlton JF, Bailey AJ (1997) Chemistry of collagen cross-linking: biochemical changes in collagen during the partial mineralization of turkey leg tendon. Biochem J 322:535–542

    PubMed  CAS  Google Scholar 

  45. Mansell JP, Bailey AJ (1998) Abnormal cancellous bone collagen metabolism in osteoarthritis. J Clin Invest 101:1596–1603

    Article  PubMed  CAS  Google Scholar 

  46. Avery NC, Bailey AJ (2005) Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. Scand J Med Sci Sports 15:231–240

    Article  PubMed  CAS  Google Scholar 

  47. Paul RG, Avery NC, Slatter DA, Sims TJ, Bailey AJ (1998) Isolation and characterization of advanced glycation end products derived from the in vitro reaction of ribose and collagen. Biochem J 330:1241–1248

    PubMed  CAS  Google Scholar 

  48. Knott L, Bailey AJ (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function and clinical relevance. Bone 22:181–187

    Article  PubMed  CAS  Google Scholar 

  49. Currey J (2003) Role of collagen and other organics in the mechanical properties of bone. Osteoporos Int (suppl 5):S29–S36

  50. Lanyon LE (1996) Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone 18:37S–43S

    Article  PubMed  CAS  Google Scholar 

  51. Boskey AL (2001) Bone mineralization. In: Cowin SC (ed), Bone Mechanics Handbook. CRC Press, Boca Raton, FL, pp 5.1–5.33

    Google Scholar 

  52. Dai XM, Zong XH, Akhter MP, Stanley ER (2004) Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblasts behaviour in developing bone. J Bone Miner Res 19:1441–1451

    Article  PubMed  CAS  Google Scholar 

  53. Wang K, Yamamoto H, Chin JR, Werb Z, Vu TH (2004) Epidermal growth factor receptor-deficient mice have delayed primary endochondral ossification because of defective osteoclast recruitment. J Biol Chem 279:53848–53856

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Professor Allen Bailey for critical review of the manuscript and Tracy Dewey for assisting with the preparation of the figures. This work was supported by a grant from The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison R. Hayman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, H.C., Knott, L., Avery, N.C. et al. Altered Collagen in Tartrate-Resistant Acid Phosphatase (TRAP)-Deficient Mice: A Role for TRAP in Bone Collagen Metabolism. Calcif Tissue Int 80, 400–410 (2007). https://doi.org/10.1007/s00223-007-9032-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9032-2

Keywords

Navigation