Skip to main content

Advertisement

Log in

Quantitative Trait Loci that Determine Mouse Tibial Nanoindentation Properties in an F2 Population Derived from C57BL/6J X C3H/HeJ

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Use of nanoindentation technology to identify quantitative trait loci (QTL) that regulate bone properties represents a novel approach to improving our understanding of molecular mechanisms that control bone matrix properties. Tibiae for QTL mapping were from an F2 population derived from C57BL/6J and C3H/HeJ. A nanoindenter (Triboindenter; Hysitron, Minneapolis, MN) was used to conduct indentation tests on transverse sections. Genotyping was performed in The Jackson Laboratory. QTL mapping was conducted using software. We found that (1) tibiae from mice at 16 weeks of age were mature and suitable for measurement by a nanoindentor; (2) both stiffness modulus and hardness modulus in the F2 population appeared to have normal distributions, which suggested that multiple genetic factors control the bone properties; and (3) QTL for hardness were identified from five chromosomes (Chr 8, 12, 13, 17, and 19) and for stiffness, from four chromosomes (Chr 3, 8, 12, and 13). Among all detected QTL, one at the same location on Chr 12 was detected for both hardness and stiffness data. It explained the highest percentage of phenotypic variation in bone properties. Using nanoindentation technology to identify QTL that regulate bone properties yielded as many as six different chromosomal regions. Although the actual genes remain to be identified, nanoindentation will contribute to our understanding of molecular mechanisms and normal development processes that control the matrix properties of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ralston SH, de Crombrugghe B (2006) Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev 15:2492–2506

    Article  CAS  Google Scholar 

  2. van der Meulen MC, Jepsen KJ, Mikic B (2001) Understanding bone strength: size isn’t everything. Bone 29:101–104

    Article  PubMed  Google Scholar 

  3. Zmuda JM, Sheu YT, Moffett SP (2006) The search for human osteoporosis genes. J Musculoskelet Neuronal Interact 6:3–15

    PubMed  CAS  Google Scholar 

  4. Wergedal JE, Ackert-Bicknell CL, Tsaih SW, Sheng MH, Li R, Mohan S, Beamer WG, Churchill GA, Baylink DJ (2006) Femur mechanical properties in the F2 progeny of an NZB/B1NJ x RF/J cross are regulated predominantly by genetic loci that regulate bone geometry. J Bone Miner Res 21:1256–1266

    Article  PubMed  CAS  Google Scholar 

  5. Chen XD, Shen H, Recker RR, Deng HW (2006) Linkage exclusion mapping with bone size in 79 Caucasian pedigrees. J Bone Miner Metab 24:337–343

    Article  PubMed  CAS  Google Scholar 

  6. Delahunty KM, Shultz KL, Gronowicz GA, Koczon-Jaremko B, Adamo ML, Horton LG, Lorenzo J, Donahue LR, Ackert-Bicknell C, Kream BE, Beamer WG, Rosen CJ (2006) Congenic mice provide in vivo evidence for a genetic locus that modulates serum insulin-like growth factor-I and bone acquisition. Endocrinology 147:3915–3923

    Article  PubMed  CAS  Google Scholar 

  7. Alam I, Sun Q, Liu L, Koller DL, Fishburn T, Carr LG, Econs MJ, Foroud T, Turner CH (2006) Identification of a quantitative trait locus on rat chromosome 4 that is strongly linked to femoral neck structure and strength. Bone 39:93–99

    Article  PubMed  CAS  Google Scholar 

  8. Li X, Gu W, Masinde G, Hamilton-Ulland M, Rundle CH, Mohan S, Baylink DJ (2001) Genetic variation in bone-regenerative capacity among inbred strains of mice. Bone 29:134–140

    Article  PubMed  CAS  Google Scholar 

  9. Koller DL, Alam I, Sun Q, Liu L, Fishburn T, Carr LG, Econs MJ, Foroud T, Turner CH (2005) Genome screen for bone mineral density phenotypes in Fisher 344 and Lewis rat strains. Mamm Genome 16:578–586

    Article  PubMed  Google Scholar 

  10. Alam I, Sun Q, Liu L, Koller DL, Fishburn T, Carr LG, Econs MJ, Foroud T, Turner CH (2005) Whole-genome scan for linkage to bone strength and structure in inbred Fischer 344 and Lewis rats. J Bone Miner Res 20:1589–1596

    Article  PubMed  CAS  Google Scholar 

  11. Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2:35–43

    Article  PubMed  CAS  Google Scholar 

  12. Obermayer-Pietsch B (2006) Genetics of osteoporosis. Wien Med Wochenschr 156:162–167

    Article  PubMed  Google Scholar 

  13. Lei SF, Chen Y, Xiong DH, Li LM, Deng HW (2006) Ethnic difference in osteoporosis-related phenotypes and its potential underlying genetic determination. J Musculoskelet Neuronal Interact 6:36–46

    PubMed  CAS  Google Scholar 

  14. Williams FM, Spector TD (2006) Recent advances in the genetics of osteoporosis. J Musculoskelet Neuronal Interact 6:27–35

    PubMed  CAS  Google Scholar 

  15. Livshits G (2006) Quantitative genetics of circulating molecules associated with bone metabolism: a review. J Musculoskelet Neuronal Interact 6:47–61

    PubMed  CAS  Google Scholar 

  16. Carbonell Sala S, Masi L, Marini F, Del Monte F, Falchetti A, Franceschelli F, Brandi ML (2005) Genetics and pharmacogenetics of osteoporosis. J Endocrinol Invest 28(suppl 10):2–7

    PubMed  CAS  Google Scholar 

  17. Gu W, Li X, Lau KH, Edderkaoui B, Donahae LR, Rosen CJ, Beamer WG, Shultz KL, Srivastava A, Mohan S, Baylink DJ (2002) Gene expression between a congenic strain that contains a quantitative trait locus of high bone density from CAST/EiJ and its wild-type strain C57BL/6J. Funct Integr Genomics 6:375–386

    Article  CAS  Google Scholar 

  18. Licata AA (2006) Diagnosing primary osteoporosis: it’s more than a T score. Cleve Clin J Med 73:473–476

    Article  PubMed  Google Scholar 

  19. Streeten EA, McBride DJ, Pollin TI, Ryan K, Shapiro J, Ott S, Mitchell BD, Shuldiner AR, O’Connell JR (2006) Quantitative trait loci for BMD identified by autosome-wide linkage scan to chromosomes 7q and 21q in men from the Amish Family Osteoporosis Study. J Bone Miner Res 21:1433–1442

    Article  PubMed  Google Scholar 

  20. Comelekoglu U, Bagis S, Yalin S, Ogenler O, Yildiz A, Sahin NO, Oguz I, Hatungil R (2006) Biomechanical evaluation in osteoporosis: ovariectomized rat model. Clin Rheumatol 26(3):380–384

    Article  PubMed  Google Scholar 

  21. Akhter MP, Otero JK, Iwaniec UT, Cullen DM, Haynatzki GR, Recker RR (2004) Differences in vertebral structure and strength of inbred female mouse strains. J Musculoskelet Neuronal Interact 4:33–40

    PubMed  CAS  Google Scholar 

  22. Muller R, van Lenthe GH (2006) Trabecular bone failure at the microstructural level. Curr Osteoporos Rep 4:80–86

    Article  PubMed  Google Scholar 

  23. Seeman E, Delmas PD (2006) Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  PubMed  CAS  Google Scholar 

  24. Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18:1325–1330

    Article  PubMed  CAS  Google Scholar 

  25. Hoffler CE, Moore KE, Kozloff K, Zysset PK, Brown MB, Goldstein SA (2000) Heterogeneity of bone lamellar-level elastic moduli. Bone 26:603–609

    Article  PubMed  CAS  Google Scholar 

  26. Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32:1005–1012

    Article  PubMed  CAS  Google Scholar 

  27. Rho JY, Zioupos P, Currey JD, Pharr GM (1999) Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25:295–300

    Article  PubMed  CAS  Google Scholar 

  28. Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA (1998) Mechanical properties of human trabecular bone lamellae quantified by nanoindentation. Technol Health Care 6:429–432

    PubMed  CAS  Google Scholar 

  29. Rho JY, Mishra SR, Chung K, Bai J, Pharr GM (2001) Relationship between ultrastructure and the nanoindentation properties of intramuscular herring bones. Ann Biomed Eng 29:1082–1088

    Article  PubMed  CAS  Google Scholar 

  30. Rho JY, Currey JD, Zioupos P, Pharr GM (2001) The anisotropic Young’s modulus of equine secondary osteones and interstitial bone determined by nanoindentation. J Exp Biol 204(Pt 10):1775–1781

    PubMed  CAS  Google Scholar 

  31. Rho JY, Roy ME 2nd, Tsui TY, Pharr GM (1999) Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J Biomed Mater Res 45:48–54

    Article  PubMed  CAS  Google Scholar 

  32. Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM (1999) The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech 32:437–411

    Article  PubMed  CAS  Google Scholar 

  33. Beamer WG, Donahue LR, Rosen CJ, Baylink DJ (1996) Genetic variability in adult bone density among inbred strains of mice. Bone 18:397–403

    Article  PubMed  CAS  Google Scholar 

  34. Bouxsein ML, Uchiyama T, Rosen CJ, Shultz KL, Donahue LR, Turner CH, Sem S, Churchill GA, Muller RA, Beamer WG (2004) Mapping quantitative trait loci for vertebral trabecular bone volume fraction and microarchitecture in mice. J Bone Miner Res 19:587–599

    Article  PubMed  CAS  Google Scholar 

  35. Beamer WG, Shultz KL, Donahue LR, Churchill GA, Sen S, Wergedal JR, Baylink DJ, Rosen CJ (2000) Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice. J Bone Miner Res 16:1195–1206

    Article  Google Scholar 

  36. Koller DL, Schriefer J, Sun Q, Shultz KL, Donahue LR, Rosen CJ, Foroud T, Beamer WG, Turner CH (2003) Genetic effects for femoral biomechanics, structure, and density in C57BL/6J and C3H/HeJ inbred mouse strains. J Bone Miner Res 18:1758–1765

    Article  PubMed  CAS  Google Scholar 

  37. Sheng MH, Lau KH, Beamer WG, Baylink DJ, Wergedal JE (2004) In vivo and in vitro evidence that the high osteoblastic activity in C3H/HeJ mice compared to C57BL/6J mice is intrinsic to bone cells. Bone 35:711–719

    Article  PubMed  CAS  Google Scholar 

  38. Tsingotjidou A, Nervina JM, Pham L, Bezouglaia O, Tetradis S (2002) Parathyroid hormone induces RGS-2 expression by a cyclic adenosine 3’,5’-monophosphate-mediated pathway in primary neonatal murine osteoblasts. Bone 30:677–684

    Article  PubMed  CAS  Google Scholar 

  39. Sokolow S, Manto M, Gailly P, Molgo J, Vandebrouck C, Vanderwinden J-M, Herchuelz A, Schurmans S (2004) Impaired neuromuscular transmission and skeletal muscle fiber necrosis in mice lacking Na/Ca exchanger 3. J Clin Invest 113:265–273

    Article  PubMed  CAS  Google Scholar 

  40. Delany AM, Amling M, Priemel M, Howe C, Baron R, Canalis E (2000) Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest 105:915–923

    Article  PubMed  CAS  Google Scholar 

  41. Hunter DJ, Demissie S, Cupples LA, Aliabadi P, Felson DT (2004) A genome scan for joint-specific hand osteoarthritis susceptibility: the Framingham Study. Arthritis Rheum 50:2489–2496

    Article  PubMed  CAS  Google Scholar 

  42. Thorp LE, Wimmer MA, Block JA, Moisio KC, Shott S, Goker B, Sumner DR (2006) Bone mineral density in the proximal tibia varies as a function of static alignment and knee adduction angular momentum in individuals with medial knee osteoarthritis. Bone 39:1116–1122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Center of Genomics and Bioinformatics and the Center in Connective Tissue Research at the University of Tennessee Health Science Center; the Veterans Administration at Memphis Medical Center; and the National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (AR51190 to W. G. and AR43618 to W. G. B.). The authors note their deep sorrow for the untimely loss of Dr. Jae-Young Rho, who established and validated fundamental processes for the nanoindentation measurements used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weikuan Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, Y., Chiu, H., Fan, Z. et al. Quantitative Trait Loci that Determine Mouse Tibial Nanoindentation Properties in an F2 Population Derived from C57BL/6J X C3H/HeJ. Calcif Tissue Int 80, 383–390 (2007). https://doi.org/10.1007/s00223-007-9030-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9030-4

Keywords

Navigation