Skip to main content

Advertisement

Log in

Differential Mechanisms of Transcriptional Regulation of the Mouse Osteocalcin Gene by Jun Family Members

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The osteocalcin gene encodes an osteoblast-specific protein that is induced with the onset of mineralization at late stages of differentiation. Several transcriptional regulators have been characterized that control the transcription of osteocalcin, including activator protein 1 (AP-1) family members such as the Fra2/JunD heterodimer. We have previously shown that the c-Jun homodimer activates transcription from the murine osteocalcin proximal promoter and that this response is potentiated by the α chain of the nascent polypeptide-associated complex (αNAC) transcriptional coactivator. We now further explore the mechanisms involved and show that c-Jun binds two cryptic AP-1 sites within the proximal promoter of osteocalcin and that this binding is strictly αNAC-dependent. Chromatin immunoprecipitation (ChIP) confirmed that c-Jun occupies its binding sites within the osteocalcin 5′-flanking region in living osteoblasts. Interestingly, the ChIP assay revealed that both JunB and JunD also bind the osteocalcin promoter. JunD, but not JunB, stimulated osteocalcin gene transcription in transient transfection assays, but this effect was not potentiated by αNAC. Thus, the c-Jun and JunD family members utilize distinct mechanisms that implicate differential interaction with transcriptional coactivators to regulate osteocalcin expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452

    Article  PubMed  CAS  Google Scholar 

  2. Banerjee C, McCabe LR, Choi JY, Hiebert SW, Stein JL, Stein GS, Lian JB (1997) Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J Cell Biochem 66:1–8

    Article  PubMed  CAS  Google Scholar 

  3. Ducy P, Karsenty G (1995) Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 15:1858–1869

    PubMed  CAS  Google Scholar 

  4. Xiao G, Jiang D, Ge C, Zhao Z, Lai Y, Boules H, Phimphilai M, Yang X, Karsenty G, Franceschi RT (2005) Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem 280:30689–30696

    Article  PubMed  CAS  Google Scholar 

  5. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology: implication for Coffin-Lowry syndrome. Cell 117:387–398

    Article  PubMed  CAS  Google Scholar 

  6. Owen TA, Bortell R, Yocum SA, et al. (1990) Coordinate occupancy of AP-1 sites in the vitamin D-responsive and CCAAT box elements by Fos-Jun in the osteocalcin gene: model for phenotype suppression of transcription. Proc Natl Acad Sci USA 87:9990–9994

    Article  PubMed  CAS  Google Scholar 

  7. Ozono K, Liao J, Kerner SA, Scott RA, Pike JW (1990) The vitamin D-responsive element in the human osteocalcin gene. Association with a nuclear proto-oncogene enhancer. J Biol Chem 265:21881–21888

    PubMed  CAS  Google Scholar 

  8. Aslam F, Shalhoub V, van Wijnen AJ, Banerjee C, Bortell R, Shakoori AR, Litwack G, Stein JL, Stein GS, Lian JB (1995) Contributions of distal and proximal promoter elements to glucocorticoid regulation of osteocalcin gene transcription. Mol Endocrinol 9:679–690

    Article  PubMed  CAS  Google Scholar 

  9. Meyer T, Carlstedt-Duke J, Starr DB (1997) A weak TATA box is a prerequisite for glucocorticoid-dependent repression of the osteocalcin gene. J Biol Chem 272:30709–30714

    Article  PubMed  CAS  Google Scholar 

  10. Hoffmann HM, Beumer TL, Rahman S, McCabe LR, Banerjee C, Aslam F, Tiro JA, van Wijnen AJ, Stein JL, Stein GS, Lian JB (1996) Bone tissue-specific transcription of the osteocalcin gene: role of an activator osteoblast-specific complex and suppressor hox proteins that bind the OC box. J Cell Biochem 61:310–324

    Article  PubMed  CAS  Google Scholar 

  11. Hoffmann HM, Catron KM, van Wijnen AJ, McCabe LR, Lian JB, Stein GS, Stein JL (1994) Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene requires a binding motif for the Msx family of homeodomain proteins. Proc Natl Acad Sci USA 91:12887–12891

    Article  PubMed  CAS  Google Scholar 

  12. Newberry EP, Latifi T, Towler DA (1998) Reciprocal regulation of osteocalcin transcription by the homeodomain proteins Msx2 and Dlx5. Biochemistry 37:16360–16368

    Article  PubMed  CAS  Google Scholar 

  13. Towler DA, Rutledge SJ, Rodan GA (1994) Msx-2/Hox 8.1: a transcriptional regulator of the rat osteocalcin promoter. Mol Endocrinol 8:1484–1493

    Article  PubMed  CAS  Google Scholar 

  14. Aslam F, McCabe L, Frenkel B, van Wijnen AJ, Stein GS, Lian JB, Stein JL (1999) AP-1 and vitamin D receptor (VDR) signaling pathways converge at the rat osteocalcin VDR element: requirement for the internal activating protein-1 site for vitamin D-mediated trans-activation. Endocrinology 140:63–70

    Article  PubMed  CAS  Google Scholar 

  15. Banerjee C, Stein JL, Van Wijnen AJ, Frenkel B, Lian JB, Stein GS (1996) Transforming growth factor-beta 1 responsiveness of the rat osteocalcin gene is mediated by an activator protein-1 binding site. Endocrinology 137:1991–2000

    Article  PubMed  CAS  Google Scholar 

  16. Goldberg D, Polly P, Eisman JA, Morrison NA (1996) Identification of an osteocalcin gene promoter sequence that binds AP1. J Cell Biochem 60:447–457

    Article  PubMed  CAS  Google Scholar 

  17. McCabe LR, Banerjee C, Kundu R, Harrison RJ, Dobner PR, Stein JL, Lian JB, Stein GS (1996) Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation: role of Fra-2 and JunD during differentiation. Endocrinology 137:4398–4408

    Article  PubMed  CAS  Google Scholar 

  18. Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420–430

    Article  PubMed  CAS  Google Scholar 

  19. Owen TA, Bortell R, Shalhoub V, Heinrichs A, Stein JL, Stein GS, Lian JB (1993) Postproliferative transcription of the rat osteocalcin gene is reflected by vitamin D-responsive developmental modifications in protein-DNA interactions at basal and enhancer promoter elements. Proc Natl Acad Sci USA 90:1503–1507

    Article  PubMed  CAS  Google Scholar 

  20. Schule R, Umesono K, Mangelsdorf DJ, Bolado J, Pike JW, Evans RM (1990) Jun-Fos and receptors for vitamins A and D recognize a common response element in the human osteocalcin gene. Cell 61:497–504

    Article  PubMed  CAS  Google Scholar 

  21. Wagner EF, Eferl R (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208:126–140

    Article  PubMed  CAS  Google Scholar 

  22. Angel PE, Herrlich PA (1994) The Fos and Jun Families of Transcription Factors. CRC Press, Boca Raton

    Google Scholar 

  23. Hartl M, Bader AG, Bister K (2003) Molecular targets of the oncogenic transcription factor jun. Curr Cancer Drug Targets 3:41–55

    Article  PubMed  CAS  Google Scholar 

  24. Boumah CE, Selvamurugan N, Partridge NC (2005) Transcription in the osteoblast: regulatory mechanisms utilized by parathyroid hormone and transforming growth factor-beta. Prog Nucleic Acid Res Mol Biol 80:287–321

    Article  PubMed  CAS  Google Scholar 

  25. Hipskind RA, Bilbe G (1998) MAP kinase signaling cascades and gene expression in osteoblasts. Front Biosci 3:d804–d816

    PubMed  CAS  Google Scholar 

  26. Lian JB, Stein GS, Stein JL, van Wijnen AJ (1998) Osteocalcin gene promoter: unlocking the secrets for regulation of osteoblast growth and differentiation. J Cell Biochem Suppl 31:62–72

    Article  Google Scholar 

  27. McCabe LR, Kockx M, Lian J, Stein J, Stein G (1995) Selective expression of fos- and jun-related genes during osteoblast proliferation and differentiation. Exp Cell Res 218:255–262

    Article  PubMed  CAS  Google Scholar 

  28. Eferl R, Hoebertz A, Schilling AF, Rath M, Karreth F, Kenner L, Amling M, Wagner EF (2004) The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J 23:2789–2799

    Article  PubMed  CAS  Google Scholar 

  29. Kenner L, Hoebertz A, Beil T, Keon N, Karreth F, Eferl R, Scheuch H, Szremska A, Amling M, Schorpp-Kistner M, Angel P, Wagner EF (2004) Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol 164:613–623

    Article  PubMed  CAS  Google Scholar 

  30. Jochum W, David JP, Elliott C, Wutz A, Plenk H Jr, Matsuo K, Wagner EF (2000) Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 6:980–984

    Article  PubMed  CAS  Google Scholar 

  31. Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, Bouali Y, Mukhopadhyay K, Ford K, Nestler EJ, Baron R (2000) Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med 6:985–990

    Article  PubMed  CAS  Google Scholar 

  32. Akhouayri O, Quelo I, St-Arnaud R (2005) Sequence-specific DNA binding by the αNAC coactivator is required for potentiation of c-Jun-dependent transcription of the osteocalcin gene. Mol Cell Biol 25:3452–3460

    Article  PubMed  CAS  Google Scholar 

  33. Yotov WV, Moreau A, St-Arnaud R (1998) The alpha chain of the nascent polypeptide-associated complex functions as a transcriptional coactivator. Mol Cell Biol 18:1303–1311

    PubMed  CAS  Google Scholar 

  34. Moreau A, Yotov WV, Glorieux FH, St-Arnaud R (1998) Bone-specific expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-Jun-mediated transcription. Mol Cell Biol 18:1312–1321

    PubMed  CAS  Google Scholar 

  35. Quelo I, Akhouayri O, Prud’homme J, St-Arnaud R (2004) GSK3ß-dependent phosphorylation of the αNAC coactivator regulates its nuclear translocation and proteasome-mediated degradation. Biochemistry 43:2906–2914

    Article  PubMed  CAS  Google Scholar 

  36. Quelo I, Hurtubise M, St-Arnaud R (2002) αNAC requires an interaction with c-Jun to exert its transcriptional coactivation. Gene Expr 10:255–262

    PubMed  CAS  Google Scholar 

  37. Ryder K, Lanahan A, Perez-Albuerne E, Nathans D (1989) jun-D: a third member of the jun gene family. Proc Natl Acad Sci USA 86:1500–1503

    Article  PubMed  CAS  Google Scholar 

  38. Ryder K, Lau LF, Nathans D (1988) A gene activated by growth factors is related to the oncogene v-jun. Proc Natl Acad Sci USA 85:1487–1491

    Article  PubMed  CAS  Google Scholar 

  39. Courey AJ, Tjian R (1988) Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55:887–898

    Article  PubMed  CAS  Google Scholar 

  40. Yotov WV, St-Arnaud R (1996) Differential splicing-in of a proline-rich exon converts αNAC into a muscle-specific transcription factor. Genes Dev 10:1763–1772

    PubMed  CAS  Google Scholar 

  41. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1993) Current Protocols in Molecular Biology. John Wiley and Sons, New York

    Google Scholar 

  42. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489

    Article  PubMed  CAS  Google Scholar 

  43. Candeliere GA, Jurutka PW, Haussler MR, St-Arnaud R (1996) A composite element binding the vitamin D receptor, retinoid X receptor alpha, and a member of the CTF/NF-1 family of transcription factors mediates the vitamin D responsiveness of the c-fos promoter. Mol Cell Biol 16:584–592

    PubMed  CAS  Google Scholar 

  44. Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96:191–198

    Article  PubMed  CAS  Google Scholar 

  45. Xiao G, Cui Y, Ducy P, Karsenty G, Franceschi RT (1997) Ascorbic acid-dependent activation of the osteocalcin promoter in MC3T3-E1 preosteoblasts: requirement for collagen matrix synthesis and the presence of an intact OSE2 sequence. Mol Endocrinol 11:1103–1113

    Article  PubMed  CAS  Google Scholar 

  46. Ryoo HM, Hoffmann HM, Beumer T, Frenkel B, Towler DA, Stein GS, Stein JL, van Wijnen AJ, Lian JB (1997) Stage-specific expression of Dlx-5 during osteoblast differentiation: involvement in regulation of osteocalcin gene expression. Mol Endocrinol 11:1681–1694

    Article  PubMed  CAS  Google Scholar 

  47. Quelo I, Gauthier C, Hannigan GE, Dedhar S, St-Arnaud R (2004) Integrin-linked kinase regulates the nuclear entry of the c-Jun coactivator alpha-NAC and its coactivation potency. J Biol Chem 279:43893–43899

    Article  PubMed  CAS  Google Scholar 

  48. Naito J, Kaji H, Sowa H, Hendy GN, Sugimoto T, Chihara K (2005) Menin suppresses osteoblast differentiation by antagonizing the AP-1 factor, JunD. J Biol Chem 280:4785–4791

    Article  PubMed  CAS  Google Scholar 

  49. Zhang R, Ducy P, Karsenty G (1997) 1,25-Dihydroxyvitamin D3 inhibits osteocalcin expression in mouse through an indirect mechanism. J Biol Chem 272:110–116

    Article  PubMed  CAS  Google Scholar 

  50. Thepot D, Weitzman JB, Barra J, Segretain D, Stinnakre MG, Babinet C, Yaniv M (2000) Targeted disruption of the murine junD gene results in multiple defects in male reproductive function. Development 127:143–153

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. St-Arnaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhouayri, O., St-Arnaud, R. Differential Mechanisms of Transcriptional Regulation of the Mouse Osteocalcin Gene by Jun Family Members. Calcif Tissue Int 80, 123–131 (2007). https://doi.org/10.1007/s00223-006-0102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-006-0102-7

Keywords

Navigation