Skip to main content

Advertisement

Log in

Relationship between Vitamin D Metabolites and Bone Mineral Density in Young Males: A Cross-Sectional and Longitudinal Study

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The purpose of this study was to investigate the association between vitamin D analogs and peak bone mineral density (BMD, g/cm2) in young men. The cohort consisted of 78 healthy young males with a mean age of 22.6 years at baseline. BMD of the total body, hip, and spine and lean body mass were measured at baseline and at follow-up 2 years later. Blood samples were assayed for 25−hydroxyvitamin D2 (25OHD2), 25-hydroxyvitamin D3 (25OHD3), and 25-hydroxyvitamin D (25OHD) at baseline using high-performance liquid chromatography. Levels of 25OHD3 significantly correlated to BMD at all sites and to lean body mass (r = 0.23–0.35, P < 0.05). In contrast, levels of 25OHD2 significantly negatively correlated with BMD of the total body (r = −0.28, P = 0.01) and spine (r = −0.27, P = 0.02). BMD was then adjusted for the influence of age, body weight, body height, and physical activity (hours/week). Level of 25OHD3 was then found to be an independent predictor of BMD of the total body (beta = 0.24, P = 0.03) and spine (beta = 0.25, P = 0.03), while level of 25OHD2 was an independent negative predictor at the same sites (beta = −0.23 for both, P = 0.03). There was a negative association between levels of 25OHD3 and 25OHD2 (r = −0.31, P = 0.006). In summary, our novel results suggest an inverse relationship between 25OHD3 and 25OHD2 and an opposite relationship of these vitamin D analogs to BMD in young men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Johnell O, Kanis J (2005) Epidemiology of osteoporotic fractures. Osteoporos Int 16(suppl 2):S3–S7

    Article  PubMed  Google Scholar 

  2. Johnell O, Kanis JA, Jonsson B, Oden A, Johansson H, De Laet C (2005) The burden of hospitalised fractures in Sweden. Osteoporos Int 16:222–228

    Article  PubMed  CAS  Google Scholar 

  3. Bonjour JP, Theintz G, Law F, Slosman D, Rizzoli R (1994) Peak bone mass. Osteoporos Int 4(suppl 1):7–13

    Article  PubMed  Google Scholar 

  4. Lin YC, Lyle RM, Weaver CM, McCabe LD, McCabe GP, Johnston CC, Teegarden D (2003) Peak spine and femoral neck bone mass in young women. Bone 32:546–553

    Article  PubMed  Google Scholar 

  5. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75

    Article  PubMed  CAS  Google Scholar 

  6. Hui SL, Slemenda CW, Johnston CC Jr (1990) The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1:30–34

    Article  PubMed  CAS  Google Scholar 

  7. Bischoff HA, Stahelin HB, Urscheler N, Ehrsam R, Vonthein R, Perrig-Chiello P, Tyndall A, Theiler R (1999) Muscle strength in the elderly: its relation to vitamin D metabolites. Arch Phys Med Rehabil 80:54–58

    Article  PubMed  CAS  Google Scholar 

  8. Mowe M, Haug E, Bohmer T (1999) Low serum calcidiol concentration in older adults with reduced muscular function. J Am Geriatr Soc 47:220–226

    PubMed  CAS  Google Scholar 

  9. Glerup H, Mikkelsen K, Poulsen L, Hass E, Overbeck S, Andersen H, Charles P, Eriksen EF (2000) Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcif Tissue Int 66:419–424

    Article  PubMed  CAS  Google Scholar 

  10. Bischoff HA, Stahelin HB, Dick W, Akos R, Knecht M, Salis C, Nebiker M, Theiler R, Pfeifer M, Begerow B, Lew RA, Conzelmann M (2003) Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res 18:343–351

    Article  PubMed  CAS  Google Scholar 

  11. Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, Staehelin HB, Bazemore MG, Zee RY, Wong JB (2004) Effect of vitamin D on falls: a meta-analysis. JAMA 291:1999–2006

    Article  PubMed  CAS  Google Scholar 

  12. Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B (2005) Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA 293:2257–2264

    Article  PubMed  CAS  Google Scholar 

  13. Papadimitropoulos E, Wells G, Shea B, Gillespie W, Weaver B, Zytaruk N, Cranney A, Adachi J, Tugwell P, Josse R, Greenwood C, Guyatt G (2002) Meta-analyses of therapies for postmenopausal osteoporosis. VIII: Meta-analysis of the efficacy of vitamin D treatment in preventing osteoporosis in postmenopausal women. Endocr Rev 23:560–569

    Article  PubMed  CAS  Google Scholar 

  14. Dilworth FJ, Scott I, Green A, Strugnell S, Guo YD, Roberts EA, Kremer R, Calverley MJ, Makin HL, Jones G (1995) Different mechanisms of hydroxylation site selection by liver and kidney cytochrome P450 species (CYP27 and CYP24) involved in vitamin D metabolism. J Biol Chem 270:16766–16774

    Article  PubMed  CAS  Google Scholar 

  15. Lehtonen-Veromaa M, Mottonen T, Nuotio I, Irjala K, Viikari J (2002) The effect of conventional vitamin D2 supplementation on serum 25(OH)D concentration is weak among peripubertal Finnish girls: a 3-year prospective study. Eur J Clin Nutr 56:431–437

    Article  PubMed  CAS  Google Scholar 

  16. Valimaki VV, Alfthan H, Lehmuskallio E, Loyttyniemi E, Sahi T, Stenman UH, Suominen H, Valimaki MJ (2004) Vitamin D status as a determinant of peak bone mass in young Finnish men. J Clin Endocrinol Metab 89:76–80

    Article  PubMed  CAS  Google Scholar 

  17. Lehtonen-Veromaa M, Mottonen T, Irjala K, Karkkainen M, Lamberg-Allardt C, Hakola P, Viikari J (1999) Vitamin D intake is low and hypovitaminosis D common in healthy 9- to 15-year-old Finnish girls. Eur J Clin Nutr 53:746–751

    Article  PubMed  CAS  Google Scholar 

  18. Glerup H, Mikkelsen K, Poulsen L, Hass E, Overbeck S, Thomsen J, Charles P, Eriksen EF (2000) Commonly recommended daily intake of vitamin D is not sufficient if sunlight exposure is limited. J Intern Med 247:260–268

    Article  PubMed  CAS  Google Scholar 

  19. Glerup H (2000) Vitamin D deficiency among immigrants [in Danish]. Ugeskr Laeger 162:6196–6199

    PubMed  CAS  Google Scholar 

  20. Brustad M, Alsaker E, Engelsen O, Aksnes L, Lund E (2004) Vitamin D status of middle-aged women at 65–71 degrees N in relation to dietary intake and exposure to ultraviolet radiation. Public Health Nutr 7:327–335

    Article  PubMed  CAS  Google Scholar 

  21. Barger-Lux MJ, Heaney RP (2002) Effects of above average summer sun exposure on serum 25-hydroxyvitamin D and calcium absorption. J Clin Endocrinol Metab 87:4952–4956

    Article  PubMed  Google Scholar 

  22. Jones G, Strugnell SA, DeLuca HF (1998) Current understanding of the molecular actions of vitamin D. Physiol Rev 78:1193–1231

    PubMed  CAS  Google Scholar 

  23. Krall EA, Sahyoun N, Tannenbaum S, Dallal GE, Dawson-Hughes B (1989) Effect of vitamin D intake on seasonal variations in parathyroid hormone secretion in postmenopausal women. N Engl J Med 321:1777–1783

    Article  PubMed  CAS  Google Scholar 

  24. Chapuy MC, Schott AM, Garnero P, Hans D, Delmas PD, Meunier PJ (1996) Healthy elderly French women living at home have secondary hyperparathyroidism and high bone turnover in winter. EPIDOS Study Group. J Clin Endocrinol Metab 81:1129–1133

    Article  PubMed  CAS  Google Scholar 

  25. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501

    Article  PubMed  CAS  Google Scholar 

  26. van der Wielen RP, Lowik MR, van den Berg H, de Groot LC, Haller J, Moreiras O, van Staveren WA (1995) Serum vitamin D concentrations among elderly people in Europe. Lancet 346:207–210

    Article  PubMed  Google Scholar 

  27. Thomas MK, Lloyd-Jones DM, Thadhani RI, Shaw AC, Deraska DJ, Kitch BT, Vamvakas EC, Dick IM, Prince RL, Finkelstein JS (1998) Hypovitaminosis D in medical inpatients. N Engl J Med 338:777–783

    Article  PubMed  CAS  Google Scholar 

  28. Armas LA, Hollis BW, Heaney RP (2004) Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 89:5387–5391

    Article  PubMed  CAS  Google Scholar 

  29. Outila TA, Karkkainen MU, Seppanen RH, Lamberg-Allardt CJ (2000) Dietary intake of vitamin D in premenopausal, healthy vegans was insufficient to maintain concentrations of serum 25-hydroxyvitamin D and intact parathyroid hormone within normal ranges during the winter in Finland. J Am Diet Assoc 100:434–441

    Article  PubMed  CAS  Google Scholar 

  30. Hartwell D, Hassager C, Christiansen C (1987) Effect of vitamin D2 and vitamin D3 on the serum concentrations of 1,25(OH)2D2 and 1,25(OH)2D3 in normal subjects. Acta Endocrinol (Copenh) 115:378–384

    CAS  Google Scholar 

  31. Rickers H, Deding A, Christiansen C, Rodbro P, Naestoft J (1982) Corticosteroid-induced osteopenia and vitamin D metabolism. Effect of vitamin D2, calcium phosphate and sodium fluoride administration. Clin Endocrinol (Oxf) 16:409–415

    CAS  Google Scholar 

  32. Tjellesen L, Hummer L, Christiansen C, Rodbro P (1986) Serum concentration of vitamin D metabolites during treatment with vitamin D2 and D3 in normal premenopausal women. Bone Miner 1:407–413

    PubMed  CAS  Google Scholar 

  33. Boland RL (1986) Plants as a source of vitamin D3 metabolites. Nutr Rev 44:1–8

    Article  PubMed  CAS  Google Scholar 

  34. Bischoff-Ferrari HA, Borchers M, Gudat F, Durmuller U, Stahelin HB, Dick W (2004) Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res 19:265–269

    Article  PubMed  CAS  Google Scholar 

  35. Sahota O, Masud T, San P, Hosking DJ (1999) Vitamin D insufficiency increases bone turnover markers and enhances bone loss at the hip in patients with established vertebral osteoporosis. Clin Endocrinol (Oxf) 51:217–221

    Article  CAS  Google Scholar 

  36. Simpson RU, Thomas GA, Arnold AJ (1985) Identification of 1,25-dihydroxyvitamin D3 receptors and activities in muscle. J Biol Chem 260:8882–8891

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by grants from the Länsförsäkringar insurance company (project P4/01) and from the Swedish National Center for Research in Sports (project 112/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Nordström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Högström, M., Nordström, A. & Nordström, P. Relationship between Vitamin D Metabolites and Bone Mineral Density in Young Males: A Cross-Sectional and Longitudinal Study. Calcif Tissue Int 79, 95–101 (2006). https://doi.org/10.1007/s00223-006-0049-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-006-0049-8

Keywords

Navigation