Skip to main content

Advertisement

Log in

The Nitric Oxide Donor Sodium Nitroprusside Inhibits Mineralization in ATDC5 Cells

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The aim of this study was to test whether the nitric oxide (NO) donor sodium nitroprusside (SNP) has an effect on mineralization in ATDC5 cells. Mineralization in ATDC5 cell culture was induced by addition of β-glycerophosphate or inorganic phosphate, visualized by staining precipitated calcium with an alizarin red stain, and quantified using atomic absorption spectrometry. SNP was shown to inhibit the mineralization of ADTC5 cells. This inhibition was not affected by inhibitors of guanylyl cyclase nor mimicked by a cyclic guanosine monophosphate (cGMP) analog. Furthermore, SNP did not inhibit phosphate uptake or inhibit apoptosis in ATDC5 cells. These findings indicate that SNP can specifically inhibit matrix mineralization via a cGMP-independent pathway and that the effect is not mediated by inhibition of phosphate transport or apoptosis. These results suggest a preventive role of NO in premature or pathological mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336

    Article  CAS  PubMed  Google Scholar 

  2. Cancedda R, Castagnola P, Cancedda FD, Dozin B, Quarto (2000) Developmental control of chondrogenesis and osteogenesis. Int J Dev Biol 44:707–714

    CAS  PubMed  Google Scholar 

  3. Shum L, Coleman CM, Hatakeyama Y, Tuan RS (2003) Morphogenesis and dysmorphogenesis of the appendicular skeleton. Birth Defects Res C Embryo Today 69:102–122

    Article  CAS  PubMed  Google Scholar 

  4. Giachelli CM (1999) Ectopic calcification: gathering hard facts about soft tissue mineralization. Am J Pathol 154:671–675

    CAS  PubMed  Google Scholar 

  5. Magne D, Julien M, Vinatier C, Merhi-Soussi F, Weiss P, Guicheux J (2005) Cartilage formation in growth plate and arteries: from physiology to pathology. Bioessays 27:708–716

    Article  CAS  PubMed  Google Scholar 

  6. Kalya S, Rosenthal AK (2005) Extracellular matrix changes regulate calcium crystal formation in articular cartilage. Curr Opin Rheumatol 17:325–329

    Article  CAS  PubMed  Google Scholar 

  7. Demer LL, Tintut Y (2003) Mineral exploration: search for the mechanism of vascular calcification and beyond. The 2003 Jeffrey M. Hoeg Award lecture. Arterioscler Thromb Vasc Biol 23:1739–1743

    CAS  PubMed  Google Scholar 

  8. Shanahan CM, Cary NR, Salisbury JR, Proudfoot D, Weissberg PL, Edmonds ME (1999) Medial localization of mineralization-regulating proteins in association with Monckeberg’s sclerosis: evidence for smooth muscle cell-mediated vascular calcification. Circulation 100:2168–2176

    CAS  PubMed  Google Scholar 

  9. Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91:1800–1809

    CAS  PubMed  Google Scholar 

  10. Bobryshev YV (2005) Transdifferentiation of smooth muscle cells into chondrocytes in atherosclerotic arteries in situ: implications for diffuse intimal calcification. J Pathol 205:641–650

    Article  PubMed  Google Scholar 

  11. Tyson KL, Reynolds JL, McNair R, Zhang Q, Weissberg PL, Shanahan CM (2003) Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol 23:489–494

    CAS  PubMed  Google Scholar 

  12. Hsu HH, Camacho NP (1999) Isolation of calcifiable vesicles from human atherosclerotic aortas. Atherosclerosis 143:353–362

    Article  CAS  PubMed  Google Scholar 

  13. Hsu HH, Camacho NP, Sun F, Tawfik O, Aono H (2000) Isolation of calcifiable vesicles from aortas of rabbits fed with high cholesterol diets. Atherosclerosis 153:337–348

    Article  CAS  PubMed  Google Scholar 

  14. Hsu HH, Camacho NC, Tawfik O, Sun F (2002) Induction of calcification in rabbit aortas by high cholesterol diets: roles of calcifiable vesicles in dystrophic calcification. Atherosclerosis 161:85–94

    Article  CAS  PubMed  Google Scholar 

  15. Kirsch T, Nah HD, Shapiro IM, Pacifici M (1997) Regulated production of mineralization-competent matrix vesicles in hypertrophic chondrocytes. J Cell Biol 137:1149–1160

    Article  CAS  PubMed  Google Scholar 

  16. Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop 314:266–280

    PubMed  Google Scholar 

  17. Li H, Forstermann U (2000) Nitric oxide in the pathogenesis of vascular disease. J Pathol 190:244–254

    Article  CAS  PubMed  Google Scholar 

  18. Alexander RW, Dzau VJ (2000) Vascular biology: the past 50 years. Circulation 102:IV112–IV116

    CAS  PubMed  Google Scholar 

  19. Jang D, Murrell GA (1998) Nitric oxide in arthritis. Free Radic Biol Med 24:1511–1519

    Article  CAS  PubMed  Google Scholar 

  20. van’t Hof RJ, Ralston SH (2001) Nitric oxide and bone. Immunology 103:255–261

    CAS  PubMed  Google Scholar 

  21. Fujishige K, Kotera J, Yanaka N, Akatsuka H, Omori K (1999) Alteration of cGMP metabolism during chondrogenic differentiation of chondroprogenitor-like EC cells, ATDC5. Biochim Biophys Acta 1452:219–227

    CAS  PubMed  Google Scholar 

  22. Krumenacker JS, Hanafy KA, Murad F (2004) Regulation of nitric oxide and soluble guanylyl cyclase. Brain Res Bull 62:505–515

    Article  CAS  PubMed  Google Scholar 

  23. Ozasa A, Komatsu Y, Yasoda A, Miura M, Sakuma Y, Nakatsuru Y, Arai H, Itoh N, Nakao K (2005) Complementary antagonistic actions between C-type natriuretic peptide and the MAPK pathway through FGFR-3 in ATDC5 cells. Bone 36:1056–1064

    Article  CAS  PubMed  Google Scholar 

  24. Pfeifer A, Aszodi A, Seidler U, Ruth P, Hofmann F, Fassler R (1996) Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science 274:2082–2086

    Article  CAS  PubMed  Google Scholar 

  25. Shukunami C, Shigeno C, Atsumi T, Ishizeki K, Suzuki F, Hiraki Y (1996) Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor. J Cell Biol 133:457–468

    Article  CAS  PubMed  Google Scholar 

  26. Shukunami C, Ishizeki K, Atsumi T, Ohta Y, Suzuki F, Hiraki Y (1997) Cellular hypertrophy and calcification of embryonal carcinoma-derived chondrogenic cell line ATDC5 in vitro. J Bone Miner Res 12:1174–1188

    CAS  PubMed  Google Scholar 

  27. Magne D, Bluteau G, Faucheux C, Palmer G, Vignes-Colombeix C, Pilet P, Rouillon T, Caverzasio J, Weiss P, Daculsi G, Guicheux J (2003) Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis-associated mineralization: possible implication of apoptosis in the regulation of endochondral ossification. J Bone Miner Res 18:1430–1442

    CAS  PubMed  Google Scholar 

  28. Bellows CG, Aubin JE, Heersche JN (1991) Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner 14:27–40

    Article  CAS  PubMed  Google Scholar 

  29. Johnson KA, Hessle L, Vaingankar S, Wennberg C, Mauro S, Narisawa S, Goding JW, Sano K, Millan JL, Terkeltaub R (2000) Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1. Am J Physiol Regul Integr Comp Physiol 279:R1365–R1377

    CAS  PubMed  Google Scholar 

  30. Kergosien N, Sautier J, Forest N (1998) Gene and protein expression during differentiation and matrix mineralization in a chondrocyte cell culture system. Calcif Tissue Int 62:114–121

    Article  CAS  PubMed  Google Scholar 

  31. Loty S, Sautier JM, Loty C, Boulekbache H, Kokubo T, Forest N (1998) Cartilage formation by fetal rat chondrocytes cultured in alginate beads: a proposed model for investigating tissue-biomaterial interactions. J Biomed Mater Res 42:213–222

    Article  CAS  PubMed  Google Scholar 

  32. Lunstrum GP, Keene DR, Weksler NB, Cho YJ, Cornwall M, Horton WA (1999) Chondrocyte differentiation in a rat mesenchymal cell line. J Histochem Cytochem 47:1–6

    CAS  PubMed  Google Scholar 

  33. Stanford CM, Jacobson PA, Eanes ED, Lembke LA, Midura RJ (1995) Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106-01 BSP). J Biol Chem 270:9420–9428

    CAS  PubMed  Google Scholar 

  34. Mansfield K, Rajpurohit R, Shapiro IM (1999) Extracellular phosphate ions cause apoptosis of terminally differentiated epiphyseal chondrocytes. J Cell Physiol 179:276–286

    Article  CAS  PubMed  Google Scholar 

  35. Mansfield K, Teixeira CC, Adams CS, Shapiro IM (2001) Phosphate ions mediate chondrocyte apoptosis through a plasma membrane transporter mechanism. Bone 28:1–8

    Article  CAS  PubMed  Google Scholar 

  36. Palmer G, Zhao J, Bonjour J, Hofstetter W, Caverzasio J (1999) In vivo expression of transcripts encoding the Glvr-1 phosphate transporter/retrovirus receptor during bone development. Bone 24:1–7

    Article  CAS  PubMed  Google Scholar 

  37. Mansfield K, Pucci B, Adams CS, Shapiro IM (2003) Induction of apoptosis in skeletal tissues: phosphate-mediated chick chondrocyte apoptosis is calcium dependent. Calcif Tissue Int 73:161–172

    Article  CAS  PubMed  Google Scholar 

  38. Fiscus RR (2002) Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neural cells. Neurosignals 11:175–190

    Article  CAS  PubMed  Google Scholar 

  39. Zech B, Kohl R, von Knethen A, Brune B (2003) Nitric oxide donors inhibit formation of the Apaf-1/caspase-9 apoptosome and activation of caspases. Biochem J 371:1055–1064

    Article  CAS  PubMed  Google Scholar 

  40. Chan SL, Fiscus RR (2003) Guanylyl cyclase inhibitors NS2028 and ODQ and protein kinase G (PKG) inhibitor KT5823 trigger apoptotic DNA fragmentation in immortalized uterine epithelial cells: anti-apoptotic effects of basal cGMP/PKG. Mol Hum Reprod 9:775–783

    Article  CAS  PubMed  Google Scholar 

  41. Yoshioka Y, Yamamuro A, Maeda S (2003) Nitric oxide at a low concentration protects murine macrophage RAW264 cells against nitric oxide-induced death via cGMP signaling pathway. Br J Pharmacol 139:28–34

    Article  CAS  PubMed  Google Scholar 

  42. Kirsch T, Wang W, Pfander D (2003) Functional differences between growth plate apoptotic bodies and matrix vesicles. J Bone Miner Res 18:1872–1881

    CAS  PubMed  Google Scholar 

  43. Matsumoto A, Comatas KE, Liu L, Stamler JS (2003) Screening for nitric oxide-dependent protein-protein interactions. Science 301:657–661

    CAS  PubMed  Google Scholar 

  44. Mahidhara RS, Hoffman RA, Huang S, Wolf-Johnston A, Vodovotz Y, Simmons RL, Billiar TR (2003) Nitric oxide-mediated inhibition of caspase-dependent T lymphocyte proliferation. J Leukoc Biol 74:403–411

    Article  CAS  PubMed  Google Scholar 

  45. Hashimoto S, Ochs RL, Rosen F, Quach J, McCabe G, Solan J, Seegmiller JE, Terkeltaub R, Lotz M (1998) Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc Natl Acad Sci USA 95:3094–3099

    CAS  PubMed  Google Scholar 

  46. Cheung HS, Ryan LM (1999) Phosphocitrate blocks nitric oxide-induced calcification of cartilage and chondrocyte-derived apoptotic bodies. Osteoarthritis Cartilage 7:409–412

    Article  CAS  PubMed  Google Scholar 

  47. Kirsch T, Harrison G, Golub EE, Nah HD (2000) The roles of annexins and types II and X collagen in matrix vesicle-mediated mineralization of growth plate cartilage. J Biol Chem 275:35577–35583

    CAS  PubMed  Google Scholar 

  48. Wang W, Xu J, Kirsch T (2003) Annexin-mediated Ca2+ influx regulates growth plate chondrocyte maturation and apoptosis. J Biol Chem 278:3762–3769

    CAS  PubMed  Google Scholar 

  49. Hauselmann HJ, Stefanovic-Racic M, Michel BA, Evans CH (1998) Differences in nitric oxide production by superficial and deep human articular chondrocytes: implications for proteoglycan turnover in inflammatory joint diseases. J Immunol 160:1444–1448

    CAS  PubMed  Google Scholar 

  50. Hayashi T, Abe E, Yamate T, Taguchi Y, Jasin HE (1997) Nitric oxide production by superficial and deep articular chondrocytes. Arthritis Rheum 40:261–269

    CAS  PubMed  Google Scholar 

  51. Scheller M, Zimmermann B, Bernimoulin JP, Scholz P (1995) Induction of metalloproteinase activity, cartilage matrix degradation and inhibition of endochondral mineralization in vitro by E. coli lipopolysaccharide is mediated by interleukin 1 alpha. Cytokine 7:331–337

    Article  CAS  PubMed  Google Scholar 

  52. Vattikuti R, Towler DA (2004) Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab 286:E686–696

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hugo S. Wouterse for expert assistance with the atomic absorption spectroscopy. We also thank the Centre for Cell Imaging at the Faculty of Veterinary Medicine, Utrecht University, for use of the fluorescence microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. A. van de Lest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huitema, L.F.A., Vaandrager, A.B., van Weeren, P.R. et al. The Nitric Oxide Donor Sodium Nitroprusside Inhibits Mineralization in ATDC5 Cells. Calcif Tissue Int 78, 171–177 (2006). https://doi.org/10.1007/s00223-005-1233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-005-1233-y

Keywords

Navigation