Skip to main content

Advertisement

Log in

Effects of Lanthanum on Composition, Crystal Size, and Lattice Structure of Femur Bone Mineral of Wistar Rats

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The application of lanthanum (La) in industry, medicine, and agriculture may cause accumulation of the element in human body. This article examines the effects of La on the femur bone mineral of male Wistar rats after administration of La(NO3)3 by gavage at the dose of 2.0 mg La(NO3)3 · kg−1 · day−1 over a 6-month period. Chemical analysis confirmed La accumulation in bone and loss in bone mineral. Thermogravimetric analysis showed a decrease in the mineral-to-matrix ratio and an increase in carbonate content. Fourier-transform infrared spectrometry revealed elevation in the contents of labile carbonate and acidic phosphate. The synchrotron radiation small-angle X-ray scattering study presented a smaller mean thickness of the mineral crystals in the bone of La-treated rats. The synchrotron radiation-extended X-ray absorption fine structure analysis indicated that the La treatment resulted in a lowered disorder in the crystals. The smaller size, more adsorbed labile carbonate, and more acidic phosphate made the bone mineral easier to dissolve, as revealed in the kinetic measurement of bone demineralization. These findings suggest that La retards bone maturation of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sigel A, Sigel H (2003) Metal ions in biological systems, vol 40. Marcel Dekker, New York

    Google Scholar 

  2. Bulman RA (2003) Metabolism and toxicity of the lanthanides. In: Sigel A, Sigel H (eds), Metal ions in biological systems, vol 40. Marcel Dekker, New York, pp 683–706

    Google Scholar 

  3. Qi D, Chen L (1985) A spectrochemical study on the distribution of rare earth contents in plant. J Peking Univ (Nat Sci) 6:68–74

    Google Scholar 

  4. Chen Z, Liu Y, Wang Y (2000) Study on distributions and accumulations of rare earth element cerium (141Ce) in mice. J Nanjing Agricult Univ 23:101–103

    CAS  Google Scholar 

  5. Zhu W, Xu S, Shao P, Zhang H, Feng J, Wu D, Yang W (1997) Investigation on intake allowance of rare earth: a study on bio-effect of rare earth in South Jiangxi. Chin Environ Sci 17:63–65

    CAS  Google Scholar 

  6. Pang X, Li D, Peng A (2002) Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environ Sci Pollut Res Int 9:143–148

    CAS  PubMed  Google Scholar 

  7. Ji YJ, Li JL (2000) Recent development in the study of biological effects of rare earth elements in China. J Health Toxicol 14:23–28

    CAS  Google Scholar 

  8. Wang K, Cheng Y, Yang X, Li R (2003) Cell responses to lanthanides and potential pharmacological actions of lanthanides. In: Sigel A, Sigel H (eds), Metal ions in biological systems, vol 40. Marcel Dekker, New York, pp 707–751

    Google Scholar 

  9. Helm L, Toth E, Merbach AE (2003) Lanthanide ions as magnetic resonance imaging agents. Nuclear and electronic relaxation properties. In: Sigel A, Sigel H (eds), Metal ions in biological systems, vol 40. Marcel Dekker, New York, pp 589–641

    Google Scholar 

  10. Albaaj F, Hutchison AJ (2005) Lanthanum carbonate (Fosrenol): a novel agent for the treatment of hyperphosphataemia in renal failure and dialysis patients. Int J Clin Pract 59:1091–1096

    Article  CAS  PubMed  Google Scholar 

  11. Behets GJ, Verberckmoes SC, D’Haese PC, De Broe ME (2004) Lanthanum carbonate: a new phosphate binder. Curr Opin Nephrol Hypertens 13:403–409

    CAS  PubMed  Google Scholar 

  12. Vanholder R, Cornelis R, Dhondt A, Lameire N (2002) The role of trace elements in uremic toxicity. Nephrol Dial Transplant 17(suppl 2):2–8, and references therein

    CAS  PubMed  Google Scholar 

  13. Jarup L (2002) Cadmium overload and toxicity. Nephrol Dial Transplant 17(suppl 2):35–39

    CAS  PubMed  Google Scholar 

  14. Wang K (1997) The analogy in chemical and biological behavior between non-special ions compared with essential ions. S Afr J Chem 50:232–238

    CAS  Google Scholar 

  15. Hardie MJ, Raston CL, Salinas A (2001) A 3,12-connected vertice sharing adamantoid hydrogen bonded network featuring tetrameric clusters of cyclotriveratrylene. Chem Commun 21:1850–1851

    Google Scholar 

  16. Jalilehvand F, Spångberg D, Lindqvist-Reis P, Hermansson K, Persson I, Sandström M (2001) Hydration of the calcium ion. An EXAFS, large-angle X-ray scattering, and molecular dynamics simulation study. J Am Chem Soc 123:431–441

    Article  CAS  PubMed  Google Scholar 

  17. Schaad Ph, Gramain Ph, Gorce F, Voegel JC (1990) Dissolution of synthetic hydroxyapatite in the presence of lanthanum ions. J Chem Soc Faraday Trans 86:4025–4029

    Google Scholar 

  18. Chen PS, Toribora TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  19. Peters F, Schwarz K, Epple M (2000) The structure of bone studied with synchroton X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta 361:131–138

    Article  CAS  Google Scholar 

  20. Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48:407–413

    CAS  PubMed  Google Scholar 

  21. Gadaleta SJ, Camacho NP, Mendelsohn R, Boskey AL (1996) Fourier transform infrared microscopy of calcified turkey leg tendon. Calcif Tissue Int 58:17–23

    CAS  PubMed  Google Scholar 

  22. Harries JE, Hukins DW, Hasnain SS (1988) Calcium environment in bone mineral determined by EXAFS spectroscopy. Calcif Tissue Int 43:250–253

    CAS  PubMed  Google Scholar 

  23. Gurman SJ, Binsted N, Ross I (1984) A rapid exact curved-wave theory for EXAFS calculations. J Phys C17:143–151

    Google Scholar 

  24. Grynpas MD, Cheng PT (1988) Fluoride reduces the rate of dissolution of bone. Bone Miner 5:1–9

    Article  CAS  PubMed  Google Scholar 

  25. Fratzl P, Schreiber S, Roschger P, Lafage M-H, Rodan G, Klaushofer K (1996) Effects of sodium fluoride and alendronate on the bone mineral in minipigs: a small-angle X-ray scattering and backscattered electron imaging study. J Bone Miner Res 11:248–253

    CAS  PubMed  Google Scholar 

  26. Rey C, Renugopalakrshanan V, Collins B, Glimecher MJ (1991) Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 49:251–258

    CAS  PubMed  Google Scholar 

  27. Nancy PC, Lindy H, Talyar RT, Alex W, Cory FB, Cathleen LR, Leon R, Adele LB (1999) The material basis for reduced mechanical properties in oim mice bones. J Bone Miner Res 14:264–272

    Google Scholar 

  28. Bohic S, Rey C, Legrand A, Sfihi H, Rohanizadeh R, Martel C, Barbier A, Daculsi G (2000) Characterization of the trabecular rat bone mineral: effect of ovariectomy and bisphosphonate treatment. Bone 26:341–348

    Article  CAS  PubMed  Google Scholar 

  29. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196

    Article  CAS  PubMed  Google Scholar 

  30. Gadaleta SJ, Camacho NP, Mendelsohn R, Boskey AL (1996) Fourier transform infrared microspectroscopy of calcified turkey leg tendon. Calcif Tissue Int 58:17–23

    CAS  PubMed  Google Scholar 

  31. Camacho NP, Rinnerthaler S, Paschalis EP, Mendelsohn R, Boshey AL, Fratzl P (1999) Complementary information on bone ultrastructure from scanning small angle X-ray scattering and Fourier-transform infrared microspectroscopy. Bone 25:287–293

    Article  CAS  PubMed  Google Scholar 

  32. Fratzl P, Groschner M, Vogl G, Koller K (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res 7:329–334

    CAS  PubMed  Google Scholar 

  33. Shapses SA, Cifuentes M, Spevak L, Chowdhury H, Brittingham J, Boskey AL, Denhardt DT (2003) Osteopontin facilitates bone resorption, decreasing bone mineral crystallinity and content during calcium deficiency. Calcif Tissue Int 73:86–92

    Article  CAS  PubMed  Google Scholar 

  34. Huang RY, Miller ML, Carlson CS, Chance MR (2002) Characterization of bone mineral composition in the proximal tibia of cynomolgus monkeys: effect of ovariectomy and nandrolone deaconate treatment. Bone 30:492–497

    CAS  PubMed  Google Scholar 

  35. Miller LM, Vairamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, Bosky AL (2001) In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the v3 PO 3−4 vibration. Biochim Biophys Acta 1527:11–19

    CAS  PubMed  Google Scholar 

  36. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 61:480–486

    CAS  PubMed  Google Scholar 

  37. Behets GJ, Dams G, Vercauteren SR, Damment SJ, Bouillon R, De Broe ME, D’Haese PC (2004) Does the phosphate binder lanthanum carbonate affect bone in rats with chronic renal failure. J Am Soc Nephrol 15:2219–2228

    Article  CAS  PubMed  Google Scholar 

  38. Guo L, Davidson RM (1999) Extracellular Ca2+ increases cytosolic free Ca2+ in freshly isolated rate odontoblasts. J Bone Miner Res 14:1357–1366

    CAS  PubMed  Google Scholar 

  39. Anand MJ, Akhilesh CS (1995) Clastogenicity of lanthanides: induction of chromosomal aberration in bone marrow cells of mice in vivo. Mutation Res 341:193–197

    Google Scholar 

  40. Zhang JC, Xu SJ, Wang K, Yu SF (2003) Effect of the rare earth ions on bone resorbing function of rabbit mature osteoclasts in vitro. Chin Sci Bull 48:2170–2175

    CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by National Natural Science Foundation of China (grants 20271005 and 20571006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.-L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Zhang, TL., Xu, SJ. et al. Effects of Lanthanum on Composition, Crystal Size, and Lattice Structure of Femur Bone Mineral of Wistar Rats. Calcif Tissue Int 78, 241–247 (2006). https://doi.org/10.1007/s00223-005-0294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-005-0294-2

Keywords

Navigation