Skip to main content

Advertisement

Log in

Microfabricated Discontinuous-Edge Surface Topographies Influence Osteoblast Adhesion, Migration, Cytoskeletal Organization, and Proliferation and Enhance Matrix and Mineral Deposition In Vitro

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The fabrication of surfaces that stimulate increased adhesion, migration, and differentiated function of osteoblasts has been viewed as being desirable for many orthopedic applications. Previous studies have shown that microfabricated pits and grooves alter adhesion, spreading, matrix secretion, and production of mineral by rat calvarial osteoblasts (RCOs). The mechanisms underlying these effects are unknown, although microenvironment and cell alignment are considered to play a role. The aim of this work was to investigate the behavior of RCOs on microfabricated discontinuous-edge surfaces (DESs), which could provide an alternative means to control both the microenvironment and cellular alignment. Two types of discontinuous-type structures were employed, gap-cornered boxes and micron scale pillars. DES gap-cornered boxes and the pillars influenced the arrangement of F-actin, microtubules, and vinculin. Osteoblasts were guided in their direction of migration on both types of substrata. Both box DESs and pillars altered the staining intensity and localization pattern of phosphotyrosine and src-activated FAK localization. Cell multilayering, matrix deposition, and mineralization were enhanced on both discontinuous topographies when compared with smooth controls. This study shows that DESs alter adhesion, migration, and proliferative responses from osteoblasts at early time points (<1 week) and promote multilayering, matrix deposition, and mineral deposition at later times (2–6 weeks). Such topographical patterns could potentially be employed as effective surface features on bone-contacting implants or in membrane-based periodontal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Qu J, Chehroudi B, Brunette DM (1996) The use of micromachined surfaces to investigate the cell behavioural factors essential to osseointegration. Oral Dis 2:102–115

    Article  CAS  PubMed  Google Scholar 

  2. Boyan BD, Hummert TW, Kieswetter K, Schraub D, Dean DD, Schwartz Z (1995) Effect of titanium surface characteristics on chondrocytes and osteoblasts in vitro. Cells Materials 5:323–334

    CAS  Google Scholar 

  3. Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17:137–146

    Article  CAS  PubMed  Google Scholar 

  4. Wieland M, Textor M, Chehroudi B, Brunette DM (2005) Synergistic interaction of topographic features in the production of bone-like nodules on Ti surfaces by rat osteoblasts. Biomaterials 26:1119–1130

    Article  CAS  PubMed  Google Scholar 

  5. Albrektsson T, Wennerberg A (2004) Oral implant surfaces: Part 2. Review focusing on clinical knowledge of different surfaces. Int J Prosthodont 17:544–564

    PubMed  Google Scholar 

  6. Cooper LF (2000) A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent 84:522–534

    Article  CAS  PubMed  Google Scholar 

  7. Anselme K, Bigerell M (2005) Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater 1:211–222

    Article  CAS  PubMed  Google Scholar 

  8. Huang HH, Ho CT, Lee TH, Lee TL, Liao KK, Chen FL (2004) Effect of surface roughness of ground titanium on initial cell adhesion. Biomol Eng 21:93–97

    Article  CAS  PubMed  Google Scholar 

  9. Boyan BD, Bonewald LF, Paschalis EP, Lohmann CH, Rosser J, Cochran DL, Dean DD, Schwartz Z, Boskey AL (2002) Osteoblast-mediated mineral deposition in culture is dependent on surface microtopography. Calcif Tissue Int 71:519–529

    Article  CAS  PubMed  Google Scholar 

  10. Brunette DM, Kenner GS, Gould TLR (1983) Grooved titanium surfaces orient growth and migration of cells from human gingival explants. J Dent Res 62:1045–1048

    CAS  PubMed  Google Scholar 

  11. Hallgren C, Sawase T, Ortengren U, Wennerberg A (2001) Histomorphometric and mechanical evaluation of the bone-tissue response to implants prepared with different orientation of surface topography. Clin Implant Dent Relat Res 3:194–203

    CAS  PubMed  Google Scholar 

  12. Chehroudi B, Brunette DM (2002) Subcutaneous microfabricated surfaces inhibit epithelial recession and promote long-term survival of percutaneous implants. Biomaterials 23:229–237

    Article  CAS  PubMed  Google Scholar 

  13. Chehroudi B, Gould TR, Brunette DM (1990) Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo. J Biomed Mater Res 24:1203–1219

    Article  CAS  PubMed  Google Scholar 

  14. Hamilton DW, Brunette DM (2005) “Gap guidance” of fibroblasts and epithelial cells by discontinuous edged surfaces. Exp Cell Res 309:429–437

    Article  CAS  PubMed  Google Scholar 

  15. Turner AM, Dowell N, Turner SW, Kam L, Isaacson M, Turner JM, Craighead HG, Shain W (2000) Attachment of astroglial cells to microfabricated pillar arrays of different geometries. J Biomed Mater Res 51:430–441

    Article  CAS  PubMed  Google Scholar 

  16. Camporese DS, Laster TP, Pulfrey DL (1981) A fine silicon shadow mask for inversion layer solar cells. IEEE Electron Device Lett 2:61–62

    Google Scholar 

  17. Baier RE, Meyer AE (1988) Future directions in surface preparation of dental implants. J Dent Educ 52:788–791

    CAS  PubMed  Google Scholar 

  18. Migliaccio S, Bernardini S, Wetsel WC, Korach KS, Farggiana T, Teti A (1998) Protein kinase C modulates estrogen receptors in differentiated osteoblastic cells in vitro. Steroids 63:352–354

    Article  CAS  PubMed  Google Scholar 

  19. Harris WH (1960) A microscopic method of determining rates of bone growth. Nature 188:1039

    CAS  PubMed  Google Scholar 

  20. Mazzini G, Giordano P, Montecucco CM, Riccardi A (1980) A rapid cytofluorometric method for quantitative DNA determination on fixed smears. Histochem J 12:153–168

    Article  CAS  PubMed  Google Scholar 

  21. Fell H, Robinson R (1929) The growth, development and phosphate activity of embryonic avian femora and limb-buds cultivated in vitro. Biochem J 23:767–784

    CAS  PubMed  Google Scholar 

  22. Hunter T, Cooper JA (1985) Protein-tyrosine kinases. Annu Rev Biochem 54:897–930

    CAS  PubMed  Google Scholar 

  23. Davies JF (1998) Mechanisms of endosseous integration. Int J Prosthodont 11:391–401

    CAS  PubMed  Google Scholar 

  24. Goto T, Yoshinari M, Kobayashi S, Tanaka T (2004) The initial attachment and subsequent behavior of osteoblastic cells and oral epithelial cells on titanium. Biomed Mater Eng 14:537–544

    PubMed  Google Scholar 

  25. Yang Y, Dennison D, Ong JL (2005) Protein adsorption and osteoblast precursor cell attachment to hydroxyapatite of different crystallinities. Int J Oral Maxillofac Implants 20:187–192

    PubMed  Google Scholar 

  26. Gough JE, Notingher I, Hench LL (2004) Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J Biomed Mater Res A 68:640–650

    Article  CAS  PubMed  Google Scholar 

  27. Fakhry A, Schneider GB, Zaharias R, Senel S (2004) Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials 25:2075–2079

    Article  CAS  PubMed  Google Scholar 

  28. Di Toro R, Betti V, Spampinato S (2004) Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly-(DL-lactide-co-glycolide) copolymers. Eur J Pharm Sci 21:161–169

    Article  CAS  PubMed  Google Scholar 

  29. Meredith DO, Owen GR, Gwynn I, Richards RG (2004) Variation in cell-substratum adhesion in relation to cell cycle phases. Exp Cell Res 293:58–67

    Article  CAS  PubMed  Google Scholar 

  30. Curtis ASG, Wilkinson CDW (1998) Reactions of cells to topography. J Biomater Sci Polym Ed 9:1313–1329

    CAS  PubMed  Google Scholar 

  31. Oakley C, Brunette DM (1995) Topographic compensation: guidance and directed locomotion of fibroblasts on grooved micromachined substrata in the absence of microtubules. Cell Motil Cytoskeleton 31:45–58

    Article  CAS  PubMed  Google Scholar 

  32. Khakbaznejad A, Chehroudi B, Brunette DM (2004) Effects of titanium-coated micromachined grooved substrata on orienting layers of osteoblast-like cells and collagen fibers in culture. J Biomed Mater Res A 70:206–218

    Article  CAS  PubMed  Google Scholar 

  33. Perizzolo D, Lacefield WR, Brunette DM (2001) Interaction between topography and coating in the formation of bone nodules in culture for hydroxyapatite- and titanium-coated micromachined surfaces. J Biomed Mater Res 56:494–503

    Article  CAS  PubMed  Google Scholar 

  34. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  CAS  PubMed  Google Scholar 

  35. Stein GS, Lian JB, Owen TA (1990) Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J 4:3111–3123

    CAS  PubMed  Google Scholar 

  36. Bellows CG, Aubin JE (1990) Determination of numbers of osteoprogenitors present in isolated fetal rat calvaria cells in vitro. Dev Biol 133:8–13

    Article  Google Scholar 

  37. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308:1472–1477

    Article  CAS  PubMed  Google Scholar 

  38. Chou L, Firth JD, Uitto VJ, Brunette DM (1995) Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J Cell Sci 108:1563–1573

    CAS  PubMed  Google Scholar 

  39. Dalby MJ, Riehle MO, Yarwood SJ, Wilkinson CD, Curtis ASG (2003) Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp Cell Res 284:274–282

    Article  CAS  PubMed  Google Scholar 

  40. Zaidi M, Blair HC, Moonga BS, Abe E, Huang CL (2003) Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics. J Bone Miner Res 18:599–609

    Article  PubMed  Google Scholar 

  41. Playford MP, Schaller MD (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 23:7928–7946

    Article  CAS  PubMed  Google Scholar 

  42. Kaplan KB, Swedlow JR, Morgan DO, Varmus HE (1995) c-Src enhances the spreading of src-/- fibroblasts on fibronectin by a kinase independent mechanism. Genes Dev 9:1505–1517

    CAS  PubMed  Google Scholar 

  43. Frenkel SR, Simon J, Alexander H, Dennis M, Ricci JL (2002) Osseointegration on metallic implant surfaces: effects of microgeometry and growth factor treatment. J Biomed Mater Res 63:706–713

    Article  CAS  PubMed  Google Scholar 

  44. Owen GRH, Jackson J, Chehroudi B, Burt H, Brunette DM (2005) A PLGA membrane controlling cell behaviour for promoting tissue regeneration. Biomaterials 26:7447–7456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Babak Chehroudi for his assistance with statistical analysis. This work was funded by a grant from the Canadian Institutes of Health Research Net program (to D. M. B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Brunette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, D.W., Wong, K.S. & Brunette, D.M. Microfabricated Discontinuous-Edge Surface Topographies Influence Osteoblast Adhesion, Migration, Cytoskeletal Organization, and Proliferation and Enhance Matrix and Mineral Deposition In Vitro . Calcif Tissue Int 78, 314–325 (2006). https://doi.org/10.1007/s00223-005-0238-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-005-0238-x

Keywords

Navigation