Skip to main content

Advertisement

Log in

Different Effects of Insulin and Insulin-Like Growth Factors I and II on Osteoprogenitors and Adipocyte Progenitors in Fetal Rat Bone Cell Populations

  • Laboratory Investigation
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We investigated the effects of insulin (1–1,000 nM), insulin-like growth factor (IGF)-I, and IGF-II (3–100 nM each) alone or together with 10 nM dexamethasone (DEX) or 10 nM 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) on proliferation and differentiation of adipocyte and osteoblast progenitors in bone cell populations derived from fetal rat calvaria. The effects on differentiation were evaluated by counting the number of bone or osteoid nodules and adipocyte colonies and the effects on proliferation, by measuring their size by image analysis. The types of cells studied were 1,25(OH)2D3- and DEX-responsive adipocyte progenitors and DEX-dependent and independent osteoprogenitors. Both IGF-I and IGF-II stimulated osteoprogenitor differentiation both alone and in the presence of DEX, while insulin stimulated osteoprogenitor differentiation only in the absence of DEX. Neither IGF-I/-II nor insulin affected proliferation of osteoprogenitors. Insulin had little effect on adipocyte differentiation by itself but strongly stimulated differentiation in the presence of either 1,25(OH)2D3 or DEX, while IGF-II stimulated adipocyte differentiation in both the absence and presence of 1,25(OH)2D3 or DEX. IGF-I by itself or in the presence of DEX strongly stimulated adipocyte cell differentiation but had little effect in the presence of 1,25(OH)2D3. Our results demonstrate that insulin, IGF-II, and IGF-I have specific and different effects on the differentiation and proliferation of different groups of progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bellows CG, Aubin JE, Heersche JNM (1987) Physiological concentrations of glucocorticoids stimulate formation of bone nodules from isolated rat calvaria cells in vitro. Endocrinology 121:1985–1992

    PubMed  CAS  Google Scholar 

  2. Maniatopoulos C, Sodek J, Melcher AH (1988) Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 254:317–330

    Article  PubMed  CAS  Google Scholar 

  3. Aronow MA, Gerstenfeld LC, Owen TA, Tassenari MS, Stein GS, Lian JB (1990) Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J Cell Physiol 143:213–221

    Article  PubMed  CAS  Google Scholar 

  4. Rickard DJ, Sullivan TA, Shenker BJ, Leboy PS, Kazhdan I (1994) Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev Biol 161:218–228

    Article  PubMed  Google Scholar 

  5. Pei W, Yoshimine Y, Heersche JNM (2003) Identification of dexamethasone-dependent osteoprogenitors in cell populations derived from adult human female bone. Calcif Tissue Int 72:124–134

    Article  PubMed  CAS  Google Scholar 

  6. Chapman AB, Knight DM, Ringold GM (1985) Glucocorticoid regulation of adipocyte differentiation: hormonal triggering of the developmental program and induction of a differentiation-dependent gene. J Cell Biol 101:1227–1235

    Article  PubMed  CAS  Google Scholar 

  7. Schwiek DR, Loffler G (1987) Glucocorticoid hormones contribute to the adipogenic activity of human serum. Endocrinology 120:469–474

    Google Scholar 

  8. Casteilla L, Nougues J, Reyne Y, Ricquier D (1991) Differentiation of ovine brown adipocyte precursor cells in a chemically defined serum-free medium. Importance of glucocorticoids and age of animals. Eur J Biochem 198:195–199

    Article  PubMed  CAS  Google Scholar 

  9. Shugart EC, Umek RM (1997) DEXamethasone signaling is required to establish the postmitotic state of adipocyte development. Cell Growth Differ 8:1091–1098

    PubMed  CAS  Google Scholar 

  10. Owen TA, Aronow MS, Barone LM, Bettencourt B, Stein GS, Lian JB (1991) Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal rat osteoblast cultures. Endocrinology 128:1496–1504

    PubMed  CAS  Google Scholar 

  11. Ishida H, Bellows CG, Aubin JE, Heersche JNM (1993) Characterization of the 1,25-(OH)2D3-induced inhibition of bone nodule formation in long-term cultures of fetal rat calvaria cells. Endocrinology 132:61–66

    Article  PubMed  CAS  Google Scholar 

  12. Sato M, Hiragan A (1988) Demonstration of 1α, 25-dihydroxyvitamin D3 receptor-like molecule in ST 13 and 3T3 L1 preadipocytes and its inhibitory effects on preadiocyte differentiation. J Cell Physiol 135:545–550

    Article  PubMed  CAS  Google Scholar 

  13. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102:341–351

    PubMed  CAS  Google Scholar 

  14. Kelly KA, Gimble JM (1998) 1,25-Dihydroxyvitamin D3 inhibits adipocyte differentiation and gene expression in murine bone marrow stromal cell clones and primary cultures. Endocrinology 139:2622–2628

    Article  PubMed  CAS  Google Scholar 

  15. Hida Y, Kawada T, Kayahashi S, Ishihara T, Fushiki T (1998) Counteraction of retinoic acid and 1,25-dihydroxyvitamin D3 on up-regulation of adipocyte differentiation with PPARgamma ligand, an antidiabetic thiazolidinedione, in 3T3-L1 cells. Life Sci 62:205–211

    Article  Google Scholar 

  16. Bellows CG, Wang YH, Heersche JNM, Aubin JE (1994) 1,25-Dihydroxyvitamin D3 stimulates adipocyte differentiation in cultures of fetal rat calvaria cells: comparison with the effects of dexamethasone. Endocrinology 134:2221–2229

    Article  PubMed  CAS  Google Scholar 

  17. Bellows CG, Heersche JNM (2001) The frequency of common progenitors for adipocytes and osteoblasts and of committed and restricted adipocyte and osteoblast progenitors in fetal rat calvaria cells. J Bone Miner Res 16:1983–1993

    Article  PubMed  CAS  Google Scholar 

  18. Vu D, Ong JM, Clemens TL, Korn PA (1996) 1,25-Dihydroxyvitamin D induces lipoprotein lipase expression in 3T3-L1 cells in association with adipocyte differentiation. Endocrinology 137:1540–1544

    Article  PubMed  CAS  Google Scholar 

  19. Oreffo RO, Virdi AS, Triffitt JT (1997) Modulation of osteogenesis and adipogenesis by human serum in human bone marrow cultures. Eur J Cell Biol 74:251–261

    PubMed  CAS  Google Scholar 

  20. Atmani H, Chappard D, Basle MF (2003) Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures: effects of dexamethasone and calcitriol. J Cell Biochem 89:364–372

    Article  PubMed  CAS  Google Scholar 

  21. Sandouk T, Reda D, Hofmann C (1993a) Antidiabetic agent pioglitazone enhances adipocyte differentiation of 3T3-F442A cells. Am J Physiol 264:C1600–C1608

    CAS  Google Scholar 

  22. Sandouk T, Reda D, Hofmann C (1993b) The antidiabetic agent pioglitazone increases expression of glucose transporters in 3T3-F442A cells by increasing messenger ribonucleic acid transcript stability. Endocrinology 133:352–359

    Article  CAS  Google Scholar 

  23. Kletzien RF, Clarke SD, Ulrich RG (1993) Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol Pharmacol 41:393–398

    Google Scholar 

  24. Wabitsch M, Hauner H, Heinze E, Teller WM (1995) The role of growth hormone/insulin-like growth factors in adipocytes differentiation. Metabolism 44(suppl 4):45–49

    Article  PubMed  CAS  Google Scholar 

  25. Valverde AM, Lorenzo M, Navarro P Benito M (1997) Phosphatidylinositol 3-kinase is a requirement for insulin-like growth factor-I-induced differentiation, but not for mitogenesis, in fetal brown adipocytes. Mol Endocrinol 11:595–607

    Article  PubMed  CAS  Google Scholar 

  26. Christofferson CT, Tornqvist H, Vlahos CJ, Bucchini D, Jami J, De Meyts P, Joshi RL (1998) Insulin and insulin-like growth factor-I receptor mediated differentiation of 3T3-F442A cells into adipocytes: effect of PI 3-kinase inhibition. Biochem Biophys Res Commun 246:426–430

    Article  Google Scholar 

  27. Canalis E (1980) Effect of insulin-like growth factor I on DNA and protein synthesis in cultured rat calvaria. J Clin Invest 66:709–719

    Article  PubMed  CAS  Google Scholar 

  28. Johnson RB, Henderson JS (1997) Enhancement by sodium orthovanadate of the formation and mineralization of bone nodules by chick osteoblasts in vitro. Arch Oral Biol 42:271–276

    Article  PubMed  CAS  Google Scholar 

  29. Kasukawa Y, Stabnov L, Miyakoshi N, Baylink DJ, Mohan S (2002) Insulin-like growth factor I effect on the number of osteoblast progenitors is impaired in ovariectomized mice. J Bone Miner Res 17:1579–1587

    Article  PubMed  CAS  Google Scholar 

  30. Mohan S, Baylink DJ (1991) The role of insulin-like growth factor-II in the coupling of bone formation to resorption. In: Spencer EM (ed) Modern Concepts of Insulin-Like Growth Factors. Elsevier, Amsterdam, pp 169–184

    Google Scholar 

  31. Cheng S-L, Zhang S-F, Mohan S, Lecanda F, Fausto A, Hunt AH, Canalis E, Avioli LV (1998) Regulation of insulin-like growth factors I and II and their binding proteins in human bone marrow stromal cells by dexamethasone. J Cell Biochem 71:449–458

    Article  PubMed  CAS  Google Scholar 

  32. Chen TL, Chang LY, Bates RL, Perlman AJ (1991) DEXamethasone and 1,25-dihydroxyvitamin D3 modulation of insulin-like growth factor-binding proteins in rat osteoblast-like cultures. Endocrinology 128:73–80

    PubMed  CAS  Google Scholar 

  33. Chen TL, Mallory JB, Hintz RL (1991) DEXamethasone and 1,25(OH)2 vitamin D3 modulate the synthesis of insulin-like growth factor-I in osteoblast-like cells. Calcif Tissue Int 48:278–282

    PubMed  CAS  Google Scholar 

  34. Imura H, Seino Y, Ishida H (1985) Osteopenia and circulating levels of vitamin D metabolites in diabetes mellitus. J Nutr Sci Vitaminol 31(suppl):S27–S32

    PubMed  CAS  Google Scholar 

  35. Verhaeghe J, Visser WJ, Einhorn TA, Bouillon R (1990a) Osteoporosis and diabetes: lessons from the diabetic BB rat. Horm Res 34:245–248

    Article  CAS  Google Scholar 

  36. Verhaeghe J, van Herck E, Visser WJ, Suiker AM, Thomasset M, Einhorn TA, Faierman E, Bouillon R (1990b) Bone and mineral metabolism in BB rats with long-term diabetes. Decreased bone turnover and osteoporosis. Diabetes 39:477–482

    CAS  Google Scholar 

  37. Bouillon R, (1992) Diabetic bone disease. Low turnover osteoporosis related to decreased IGF-I production. Verh K Acad Geneeskd Belg 54:365–391

    PubMed  CAS  Google Scholar 

  38. Epstein S, Takizawa M, Stein B, Katz IA, Joffe II, Romero DF, Liang XG, Li M, Ke HZ, Jee WSS, Jacobs TW, Berlin J (1994) Effect of cyclosporin A on bone mineral metabolism in experimental diabetes mellitus in the rat. J Bone Miner Res 9:557–566

    Article  PubMed  CAS  Google Scholar 

  39. Jia D, Heersche JNM (2000) Insulin-like growth factor-1 and -2 stimulate osteoprogenitor proliferation and differentiation and adipocytes formation in cell populations derived from adult rat bone. Bone 27:785–794

    Article  PubMed  CAS  Google Scholar 

  40. Ishida Y, Tertenegg I, Heersche JNM (1996) Progesterone and dexamethasone stimulate proliferation and differentiation of osteoprogenitors and progenitors for adipocytes and macrophages in cell populations derived from adult rat vertebrae. J Bone Miner Res 11:921–930

    PubMed  CAS  Google Scholar 

  41. Bellows CG, Aubin JE, Heersche JNM, Antosz ME (1986) Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int 38:143–154

    PubMed  CAS  Google Scholar 

  42. Rao LG, Ng B, Brunette DM, Heersche JNM (1977) Parathyroid hormone and prostaglandin E1-response in a selected population of bone cells after repeated subculture and storage at −80°C. Endocrinology 100:1233–1241

    Article  PubMed  CAS  Google Scholar 

  43. Purpura KA, Aubin JE, Zandstra PW (2003) Two-color image anaysis discriminates between mineralized and unmineralized bone nodules in vitro. Biotechniques 34:1188–1198

    PubMed  CAS  Google Scholar 

  44. Bellows CG, Aubin JE (1989) Determination of numbers of osteoprogenitors present in isolated fetal rat calvaria cells in vitro. Dev Biol 133:8–13

    Article  PubMed  CAS  Google Scholar 

  45. Bellows CG, Heersche JMN, Aubin JE (1990) Determination of the capacity for proliferation and differentiation of osteoprogenitor cells in the presence and absence of dexamethasone. Dev Biol 140:132–138

    Article  PubMed  CAS  Google Scholar 

  46. Scutt A, Bertram P, Braütigam M (1996) The role of glucocorticoids and prostaglandin E2 in the recruitment of bone marrow mesenchymal cells to the osteoblastic lineage: positive and negative effects. Calcif Tissue Int 59:154–162

    Article  PubMed  CAS  Google Scholar 

  47. Dodson SA, Bernard GW, Kenney EB, Carranza FA (1996) In vitro comparison of aged and young osteogenic and hemopoietic bone marrow stem cells and their derivative colonies. J Periodontol 67:184–196

    PubMed  CAS  Google Scholar 

  48. Oreffo ROC, Bennett A, Carr AJ, Triffitt JT (1998) Patients with primary osteoarthritis show no change with ageing in the number of osteogenic precursers. Scand J Rheumatol 27:415–424

    Article  PubMed  CAS  Google Scholar 

  49. Oreffo ROC, Bord S, Triffitt JT (1998) Skeletal progenitor cells and ageing human populations. Clin Sci 94:549–555

    PubMed  CAS  Google Scholar 

  50. Malaval L, Liu F, Roche P, Aubin JE (1999) Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. J Cell Biochem 74:616–627

    Article  PubMed  CAS  Google Scholar 

  51. Stenderup K, Justesen J, Eriksen EF, Rattan SIS, Kassem M (2001) Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J Bone Miner Res 16:1120–1129

    Article  PubMed  CAS  Google Scholar 

  52. Owen ME (1985) Lineage of osteogenic cells and their relationship to the stromal system. In: Peck WA (ed), Bone and Mineral Research, vol 3. Elsevier, Amsterdam, pp 1–25

    Google Scholar 

  53. Aubin JE, Turksen K, Heersche JNM (1993) Osteoblastic cell lineage. In: Noda M (ed), Cellular and Molecular Biology of Bone. Academic Press, New York, pp 1–45

    Google Scholar 

  54. Bennett JH, Joyner CJ, Triffitt JT, Owen ME (1991) Adipocyte cells cultured from marrow have osteogenic potential. J Cell Sci 99:131–139

    PubMed  Google Scholar 

  55. Dorheim MA, Sullivan M, Dandapani V, Wu X, Hudson J, Segarini PR, Rosen DM, Aulthouse AL, Gimble JM (1993) Osteoblastic gene expression during adipogenesis in hematopoietic supporting murine bone marrow stromal cells. J Cell Physiol 154:317–328

    Article  PubMed  CAS  Google Scholar 

  56. Okuyama R, Yanai N, Obinata M (1995) Differentiation capacity toward mesenchymal cell lineages of bone marrow stromal cells established from temperature-sensitive SV40 T-antigen gene transgenic mouse. Exp Cell Res 218:424–429

    Article  PubMed  CAS  Google Scholar 

  57. Rickard DJ, Kassem M, Heffernan TE, Sarkar G, Spelsberg TC, Riggs BL (1996) Isolation and characterization of osteoblast precursor cells from human bone marrow. J Bone Miner Res 11:312–324

    PubMed  CAS  Google Scholar 

  58. Asahina I, Sampath TK, Hauschka PV (1996) Human osteogenic protein-1 induces chondroblastic, osteoblastic and/or adipocytic differentiation in clonal murine target cells. Exp Cell Res 222:38–47

    Article  PubMed  CAS  Google Scholar 

  59. Benayahu D, Shamay A, Wientroub S (1997) Osteocalcin (BGP), gene expression, and protein production by marrow stromal adipocytes. Biochem Biophys Res Commun 231:442–446

    Article  PubMed  CAS  Google Scholar 

  60. Houghton A, Oyajobi BO, Foster GA, Russell RGG, Stringer BMJ (1998) Immortalization of human marrow stromal cells by retroviral transduction with a temperature sensitive oncogene: identification of bipotential precursor cells capable of directed differentiation to either an osteoblast or an adipocyte phenotype. Bone 22:7–16

    Article  PubMed  CAS  Google Scholar 

  61. Nuttall ME, Patton AJ, Olivera DL, Nadeau DP, Gowen M (1998) Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res 13:371–382

    Article  PubMed  CAS  Google Scholar 

  62. Thomas DM, Rogers SD, Ng KW, Best JD (1996) DEXamethasone modulates insulin receptor expression and subcellular distribution of the glucose transporter GLUT 1 in U106-01, a clonal osteogenic sarcoma cell line. J Mol Endocrinol 17:7–17

    Article  PubMed  CAS  Google Scholar 

  63. Maestro B, Campion J, Davila N, Calle C (2000) Stimulation by 1,25-dihydroxyvitamin D3 of insulin receptor expression and insulin responsiveness for glucose transport in human promonocytic cells. Endocr J 47:383–391

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Bellows.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellows, C.G., Jia, D., Jia, Y. et al. Different Effects of Insulin and Insulin-Like Growth Factors I and II on Osteoprogenitors and Adipocyte Progenitors in Fetal Rat Bone Cell Populations. Calcif Tissue Int 79, 57–65 (2006). https://doi.org/10.1007/s00223-005-0234-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-005-0234-1

Keywords

Navigation