Skip to main content

Advertisement

Log in

PIXImus Bone Densitometer and Associated Technical Measurement Issues of Skeletal Growth in the Young Rat

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The PIXImus dual-energy X-ray absorptiometer (DXA) is designed to measure body composition, bone mineral content (BMC), area (BA), and density (BMD) in mice and rats. The aims of this study were to longitudinally measure BMC, BA, and BMD in growing rats and to identify potential technical problems associated with the PIXImus. Total femur and lumbar DXA measurements, body weight, and length of initially 3-week-old rats (n = 10) were taken at weeks 5, 9, and 14. BMC and BMD of femoral metaphyseal and diaphyseal regions rich in trabecular and cortical bone, respectively, were obtained. Results showed significant increases in body weight, total femur BMC and BMD, lumbar area, length, BMC, and BMD at each time point. There was a significant positive correlation between body weight and total femur BMD (r = 0.97, P < 0.001) as well as lumbar BMD (r = 0.99, P < 0.001). BMD values for the femoral metaphyseal region and the lumbar spine were also positively correlated (r = 0.96, P < 0.01). Several technical issues (e.g., positioning of animals), difficulties (e.g., in analysis of images), and limitations (e.g., inability to detect underdeveloped calcified bone in growing animals and bone edge detection) of the software pertinent to the PIXImus were evident. In conclusion, despite limitations in the software, the PIXImus is a valuable tool for studying skeletal development of growing rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McGuigan FE, Murray L, Gallagher A, Davey-Smith G, Neville CE, Van’t Hof R, Boreham C, Ralston SH (2002) Genetic and environmental determinants of peak bone mass in young men and women. J Bone Miner Res 17:1273–1279

    CAS  PubMed  Google Scholar 

  2. Bonjour JP, Ammann P, Chevalley T, Rizzoli R (2001) Protein intake and bone growth. Can J Appl Physiol 26:S153–S166

    CAS  PubMed  Google Scholar 

  3. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. Osteoporos Int 11:985–1009

    Article  CAS  PubMed  Google Scholar 

  4. Ginty F, Cavadini C, Michaud PA, Burckhardt P, Baumgartner M, Mishra GD, Barclay DV (2004) Effects of usual nutrient intake and vitamin D status on markers of bone turnover in Swiss adolescents. Eur J Clin Nutr 58:1257–1265

    Article  CAS  PubMed  Google Scholar 

  5. Ilich JZ, Skugor M, Hangartner T, Baoshe A, Matkovic V (1998) Relation of nutrition, body composition and physical activity to skeletal development: a cross-sectional study in preadolescent females. J Am Coll Nutr 17:136–147

    CAS  PubMed  Google Scholar 

  6. Salamoun MM, Kizirian AS, Tannous RI, Nabulsi MM, Choucair MK, Deeb ME, Hajj Fuleihan GA (2005) Low calcium and vitamin D intake in healthy children and adolescents and their correlates. Eur J Clin Nutr 59:177–184

    Article  CAS  PubMed  Google Scholar 

  7. Bonjour JP, Chevalley T, Ammann P, Slosman D, Rizzoli R (2001) Gain in bone mineral mass in prepubertal girls 3.5 years after discontinuation of calcium supplementation: a follow-up study. Lancet 358:1208–1212

    Article  CAS  PubMed  Google Scholar 

  8. Dibba B, Prentice A, Ceesay M, Mendy M, Darboe S, Stirling DM, Cole TJ, Poskitt EM (2002) Bone mineral contents and plasma osteocalcin concentrations of Gambian children 12 and 24 mo after the withdrawal of a calcium supplement. Am J Clin Nutr 76:681–686

    CAS  PubMed  Google Scholar 

  9. Matkovic V, Goel PK, Badenhop-Stevens NE, Landoll JD, Li B, Ilich JZ, Skugor M, Nagode LA, Mobley SL, Ha EJ, Hangartner TN, Clairmont A (2005) Calcium supplementation and bone mineral density in females from childhood to young adulthood: a randomized controlled trial. Am J Clin Nutr 81:175–188

    CAS  PubMed  Google Scholar 

  10. Dibba B, Prentice A, Ceesay M, Stirling DM, Cole TJ, Poskitt EM (2000) Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low-calcium diet. Am J Clin Nutr 71:544–549

    CAS  PubMed  Google Scholar 

  11. Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G, Rizzoli R (1997) Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 99:1287–1294

    CAS  PubMed  Google Scholar 

  12. Cadogan J, Eastell R, Jones N, Barker ME (1997) Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ 315:1255–1260

    CAS  PubMed  Google Scholar 

  13. Cavalie H, Lac G, Lebecque P, Chanteranne B, Davicco MJ, Barlet JP (2002) Influence of clenbuterol on bone metabolism in exercised or sedentary rats. J Appl Physiol 93:2034–2037

    CAS  PubMed  Google Scholar 

  14. Jarvinen TL, Kannus P, Pajamaki I, Vuohelainen T, Tuukkanen J, Jarvinen M, Sievanen H (2003) Estrogen deposits extra mineral into bones of female rats in puberty, but simultaneously seems to suppress the responsiveness of female skeleton to mechanical loading. Bone 32:642–651

    Article  CAS  PubMed  Google Scholar 

  15. Kalu DN, Liu CC, Hardin RR, Hollis BW (1989) The aged rat model of ovarian hormone deficiency bone loss. Endocrinology 124:7–16

    CAS  PubMed  Google Scholar 

  16. Reinwald S, Li Y, Moriguchi T, Salem N Jr, Watkins BA (2004) Repletion with (n-3) fatty acids reverses bone structural deficits in (n-3)-deficient rats. J Nutr 134:388–394

    CAS  PubMed  Google Scholar 

  17. Takahashi A, Onodera K, Kamei J, Sakurada S, Shinoda H, Miyazaki S, Saito T, Mayanagi H (2003) Effects of chronic administration of zonisamide, an antiepileptic drug, on bone mineral density and their prevention with alfacalcidol in growing rats. J Pharmacol Sci 91:313–318

    Article  CAS  PubMed  Google Scholar 

  18. Keenan MJ, Hegsted M, Jones KL, Delany JP, Kime JC, Melancon LE, Tulley RT, Hong KD (1997) Comparison of bone density measurement techniques: DXA and Archimedes’ principle. J Bone Miner Res 12:1903–1907

    CAS  PubMed  Google Scholar 

  19. Bertin E, Ruiz JC, Mourot J, Peiniau P, Portha B (1998) Evaluation of dual-energy X-ray absorptiometry for body-composition assessment in rats. J Nutr 128:1550–1554

    CAS  PubMed  Google Scholar 

  20. Nagy TR, Prince CW, Li J (2001) Validation of peripheral dual-energy X-ray absorptiometry for the measurement of bone mineral in intact and excised long bones of rats. J Bone Miner Res 16:1682–1687

    CAS  PubMed  Google Scholar 

  21. Masinde GL, Li X, Gu W, Wergedal J, Mohan S, Baylink DJ (2002) Quantitative trait loci for bone density in mice: the genes determining total skeletal density and femur density show little overlap in F2 mice. Calcif Tissue Int 71:421–428

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Mohan S, Gu W, Wergedal J, Baylink DJ (2001) Quantitative assessment of forearm muscle size, forelimb grip strength, forearm bone mineral density, and forearm bone size in determining humerus breaking strength in 10 inbred strains of mice. Calcif Tissue Int 68:365–369

    Article  CAS  PubMed  Google Scholar 

  23. Brochmann EJ, Duarte ME, Zaidi HA, Murray SS (2003) Effects of dietary restriction on total body, femoral, and vertebral bone in SENCAR, C57BL/6, and DBA/2 mice. Metabolism 52:1265–1273

    Article  CAS  PubMed  Google Scholar 

  24. Murray SS, Duarte ME, Brochmann EJ (2003) The effects of dietary restriction on humeral and mandibular bone in SENCAR, C57BL/6, and DBA/2 mice. Metabolism 52:970–977

    Article  CAS  PubMed  Google Scholar 

  25. Iida-Klein A, Zhou H, Lu SS, Levine LR, Ducayen-Knowles M, Dempster DW, Nieves J, Lindsay R (2002) Anabolic action of parathyroid hormone is skeletal site specific at the tissue and cellular levels in mice. J Bone Miner Res 17:808–816

    CAS  PubMed  Google Scholar 

  26. Samuels A, Perry MJ, Gibson R, Tobias JH (2001) Effects of combination therapy with PTH and 17β-estradiol on long bones of female mice. Calcif Tissue Int 69:164–170

    Article  CAS  PubMed  Google Scholar 

  27. Binkley N, Krueger D, Engelke J, Crenshaw T, Suttie J (2002) Vitamin K supplementation does not affect ovariectomy-induced bone loss in rats. Bone 30:897–900

    Article  CAS  PubMed  Google Scholar 

  28. Conover CA, Johnstone EW, Turner RT, Evans GL, John Ballard FJ, Doran PM, Khosla S (2002) Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis. Growth Horm IGF Res 12:178–183

    CAS  PubMed  Google Scholar 

  29. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  PubMed  Google Scholar 

  30. Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270

    CAS  PubMed  Google Scholar 

  31. Binkley N, Dahl DB, Engelke J, Kawahara-Baccus T, Krueger D, Colman RJ (2003) Bone loss detection in rats using a mouse densitometer. J Bone Miner Res 18:370–375

    CAS  PubMed  Google Scholar 

  32. Jebb SA, Garland SW, Jennings G, Elia M (1996) Dual-energy X-ray absorptiometry for the measurement of gross body composition in rats. Br J Nutr 75:803–809

    Article  CAS  PubMed  Google Scholar 

  33. Gala Paniagua J, Diaz-Curiel M, De La Piedra Gordo C, Castilla Reparaz C, Torralbo Garcia M (1998) Bone mass assessment in rats by dual energy X-ray absorptiometry. Br J Radiol 71:754–758

    CAS  PubMed  Google Scholar 

  34. Griffin MG, Kimble R, Hopfer W, Pacifici R (1993) Dual-energy X-ray absorptiometry of the rat: accuracy, precision, and measurement of bone loss. J Bone Miner Res 8:795–800

    CAS  PubMed  Google Scholar 

  35. Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E (1999) The differing tempo of growth in bone size, mass, and density in girls is region-specific. J Clin Invest 104:795–804

    CAS  PubMed  Google Scholar 

  36. Fuiterson JA, Himes JH, French SA, Jenson S, Petit MA, Stewart C, Story M, Ensrud K, Fillhouer S, Jacobsen K (2004). Bone outcomes and technical measurement issues of bone health among children and adolescents:considerations for nutrition and physical activity intervention trials. Osteoporos. Int. 15:929–941

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ann Prentice, Dr. Ann Laskey, and Dr. Laurent Ameye for helpful discussions and critical review of the manuscript as well as Manuel Oliveira for help with the densitometric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ginty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soon, G., Quintin, A., Scalfo, F. et al. PIXImus Bone Densitometer and Associated Technical Measurement Issues of Skeletal Growth in the Young Rat. Calcif Tissue Int 78, 186–192 (2006). https://doi.org/10.1007/s00223-005-0191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-005-0191-8

Keywords

Navigation