Skip to main content

Advertisement

Log in

Daily Physical Education in the School Curriculum in Prepubertal Girls during 1 Year is Followed by an Increase in Bone Mineral Accrual and Bone Width—Data from the Prospective Controlled Malmö Pediatric Osteoporosis Prevention Study

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate a general school-based 1-year exercise intervention program in a population-based cohort of girls at Tanner stage I. Fifty-three girls aged 7–9 years were included. The school curriculum-based exercise intervention program included 40 minutes/school day. Fifty healthy age-matched girls assigned to the general school curriculum of 60 minutes physical activity/week served as controls. Bone mineral content (BMC, g) and areal bone mineral density (aBMD, g/cm2) were measured with dual X-ray absorptiometry (DXA) of the total body (TB), lumbar spine (L2–L4 vertebrae), third lumbar vertebra (L3), femoral neck (FN), and leg. Volumetric bone mineral density (g/cm3) and bone width were calculated at L3 and FN. Total lean body mass and total fat mass were estimated from the TB scan. No differences at baseline were found in age, anthropometrics, or bone parameters when the groups were compared. The annual gain in BMC was 4.7 percentage points higher in the lumbar spine and 9.5 percentage points higher in L3 in cases than in controls (both P < 0.001). The annual gain in aBMD was 2.8 percentage points higher in the lumbar spine and 3.1 percentage points higher in L3 in cases than in controls (both P < 0.001). The annual gain in bone width was 2.9 percentage points higher in L3 in cases than in controls (P < 0.001). A general school-based exercise program in girls aged 7–9 years enhances the accrual of BMC and aBMD and increases bone width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hui SL, Slemenda CW, Johnston CC Jr (1990) The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1:30–34

    Article  CAS  PubMed  Google Scholar 

  2. Kelly PJ, Morrison NA, Sambrook PN, Nguyen TV, Eisman JA (1995) Genetic influences on bone turnover, bone density and fracture. Eur J Endocrinol 133:265–271

    CAS  PubMed  Google Scholar 

  3. Bailey DA, Faulkner RA, McKay HA (1996) Growth, physical activity, and bone mineral acquisition. Exerc Sport Sci Rev 24:233–266

    CAS  PubMed  Google Scholar 

  4. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA (1999) A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res 14:1672–1679

    CAS  PubMed  Google Scholar 

  5. Sabatier JP, Guaydier-Souquieres G, Benmalek A, Marcelli C (1999) Evolution of lumbar bone mineral content during adolescence and adulthood: a longitudinal study in 395 healthy females 10–24 years of age and 206 premenopausal women. Osteoporos Int 9:476–482

    Article  CAS  PubMed  Google Scholar 

  6. Duppe H, Gardsell P, Nilsson B, Johnell O (1997) A single bone density measurement can predict fractures over 25 years. Calcif Tissue Int 60:171–174

    CAS  PubMed  Google Scholar 

  7. Hui SL, Slemenda CW, Johnston CC Jr (1989) Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med 111:355–361

    CAS  PubMed  Google Scholar 

  8. Johnell O, Gullberg B, Kanis JA, et al. (1995) Risk factors for hip fracture in European women: the MEDOS Study. Mediterranean Osteoporosis Study. J Bone Miner Res 10:1802–1815

    CAS  PubMed  Google Scholar 

  9. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, Cauley J, Black D, Vogt TM (1995) Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 332:767–773

    Article  CAS  PubMed  Google Scholar 

  10. Kannus P, Haapasalo H, Sievanen H, Oja P, Vuori I (1994) The site-specific effects of long-term unilateral activity on bone mineral density and content. Bone 15:279–284

    Article  CAS  PubMed  Google Scholar 

  11. Haapasalo H, Sievanen H, Kannus P, Heinonen A, Oja P, Vuori I (1996) Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading. J Bone Miner Res 11:864–872

    CAS  PubMed  Google Scholar 

  12. Blimkie CJ, Rice S, Webber CE, Martin J, Levy D, Gordon CL (1996) Effects of resistance training on bone mineral content and density in adolescent females. Can J Physiol Pharmacol 74:1025–1033

    Article  CAS  PubMed  Google Scholar 

  13. Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res 13:1814–1821

    CAS  PubMed  Google Scholar 

  14. McKay HA, Petit MA, Schutz RW, Prior JC, Barr SI, Khan KM (2000) Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr 136:156–162

    CAS  PubMed  Google Scholar 

  15. Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD (1997) Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res 12:1453–1462

    CAS  PubMed  Google Scholar 

  16. Fuchs RK, Bauer JJ, Snow CM (2001) Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 16:148–156

    CAS  PubMed  Google Scholar 

  17. Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, Seeman E (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 13:500–507

    CAS  PubMed  Google Scholar 

  18. Heinonen A, Sievanen H, Kannus P, Oja P, Pasanen M, Vuori I (2000) High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int 11:1010–1017

    CAS  PubMed  Google Scholar 

  19. MacKelvie KJ, Khan KM, Petit MA, Janssen PA, McKay HA (2003) A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics 112:e447

    Article  PubMed  Google Scholar 

  20. Mackelvie KJ, McKay HA, Khan KM, Crocker PR (2001) A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr 139:501–508

    CAS  PubMed  Google Scholar 

  21. Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL (1998) Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int 8:152–158

    CAS  PubMed  Google Scholar 

  22. Heinonen A, Oja P, Kannus P, Sievanen H, Haapasalo H, Manttari A, Vuori I (1995) Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone 17:197–203

    Article  CAS  PubMed  Google Scholar 

  23. Cassell C, Benedict M, Specker B (1996) Bone mineral density in elite 7- to 9-yr-old female gymnasts and swimmers. Med Sci Sports Exerc 28:1243–1246

    CAS  PubMed  Google Scholar 

  24. Heinonen A, Kannus P, Sievanen H, Oja P, Pasanen M, Rinne M, Uusi-Rasi K, Vuori I (1996) Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 348:1343–1347

    Article  CAS  PubMed  Google Scholar 

  25. Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I (1995) Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123:27–31

    CAS  PubMed  Google Scholar 

  26. Briss PA, Zaza S, Pappaioanou M, Fielding J, Wright-De Aguero L, Truman BI, Hopkins DP, Mullen PD, Thompson RS, Woolf SH, Carande-Kulis VG, Anderson L, Hinman AR, McQueen DV, Teutsch SM, Harris JR (2000) Developing an evidence-based guide to community preventive services — methods. The Task Force on Community Preventive Services. Am J Prev Med 18 (suppl 1):35–43

    CAS  PubMed  Google Scholar 

  27. Haapasalo H, Kannus P, Sievanen H, Pasanen M, Uusi-Rasi K, Heinonen A, Oja P, Vuori I (1998) Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 13:310–319

    CAS  PubMed  Google Scholar 

  28. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334

    Article  PubMed  Google Scholar 

  29. Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E (1999) The differing tempo of growth in bone size, mass, and density in girls is region-specific. J Clin Invest 104:795–804

    CAS  PubMed  Google Scholar 

  30. Liu YX, Wikland KA, Karlberg J (2000) New reference for the age at childhood onset of growth and secular trend in the timing of puberty in Swedish. Acta Paediatr 89:637–643

    Article  CAS  PubMed  Google Scholar 

  31. MacKelvie KJ, Khan KM, McKay HA (2002) Is there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic review. Br J Sports Med 36:250–257

    Article  CAS  PubMed  Google Scholar 

  32. Fournier PE, Rizzoli R, Slosman DO, Theintz G, Bonjour JP (1997) Asynchrony between the rates of standing height gain and bone mass accumulation during puberty. Osteoporos Int 7:525–532

    Article  CAS  PubMed  Google Scholar 

  33. Faulkner RA, McCulloch RG, Fyke SL, De Coteau WE, McKay HA, Bailey DA, Houston CS, Wilkinson AA (1995) Comparison of areal and estimated volumetric bone mineral density values between older men and women. Osteoporos Int 5:271–275

    CAS  PubMed  Google Scholar 

  34. Bonjour JP, Gea T (1991) Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolscence. J Clin Endocrinol Soc 73:555–563

    CAS  Google Scholar 

  35. Kroger H, Kotaniemi A, Vainio P, Alhava E (1992) Bone densitometry of the spine and femur in children by dual-energy X-ray absorptiometry. Bone Miner 17:75–85

    CAS  PubMed  Google Scholar 

  36. Kroger H, Kotaniemi A, Kroger L, Alhava E (1993) Development of bone mass and bone density of the spine and femoral neck — a prospective study of 65 children and adolescents. Bone Miner 23:171–182

    CAS  PubMed  Google Scholar 

  37. Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, Bonjour JP (1992) Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 75:1060–1065

    Article  CAS  PubMed  Google Scholar 

  38. Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD (1990) Measurement of bone mineral content of the lumbar spine by dual energy X-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab 70:1330–1333

    CAS  PubMed  Google Scholar 

  39. Bass LS, Saxon LS, Iuliano-Burns S, Naughton G, Daly R, Nowson C, Briganti E, Austen S (2003) Limitations of long term exercise interventions aimed at improving bone health in normally active boys. J Bone Miner Res 18(Suppl 1):151

    Google Scholar 

  40. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    CAS  PubMed  Google Scholar 

  41. Lu PW, Cowell CT, L.Loyd-Jones SA, Briody JN, Howman-Giles R (1996) Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab 81:1586–1590

    Article  CAS  PubMed  Google Scholar 

  42. Ruff CB, Hayes WC (1988) Sex differences in age-related remodeling of the femur and tibia. J Orthop Res 6:886–896

    Article  CAS  PubMed  Google Scholar 

  43. Cowell CT, Lu PW, Lloyd-Jones SA, Briody JN, Allen JR, Humphries IR, Reed E, Knight J, Howman-Giles R, Gaskin K (1995) Volumetric bone mineral density — a potential role in paediatrics. Acta Paediatr Suppl 411:12–17

    CAS  PubMed  Google Scholar 

  44. Duppe H, Gardsell P, Johnell O, Nilsson BE, Ringsberg K (1997) Bone mineral density, muscle strength and physical activity. A population-based study of 332 subjects aged 15–42 years. Acta Orthop Scand 68:97–103

    CAS  PubMed  Google Scholar 

  45. Sundberg M, Duppe H, Gardsell P, Johnell O, Ornstein E, Sernbo I (1997) Bone mineral density in adolescents. Higher values in a rural area — a population-based study of 246 subjects in southern Sweden. Acta Orthop Scand 68:456–460

    CAS  PubMed  Google Scholar 

  46. Sundberg M, Gardsell P, Johnell O, Karlsson MK, Ornstein E, Sandstedt B, Sernbo I (2001) Peripubertal moderate exercise increases bone mass in boys but not in girls: a population-based intervention study. Osteoporos Int 12:230–238

    Article  CAS  PubMed  Google Scholar 

  47. Duke PM, Litt IF, Gross RT (1980) Adolescents’ self-assessment of sexual maturation. Pediatrics 66:918–920

    CAS  PubMed  Google Scholar 

  48. Bass L (2003) Limitations of long term exercise interventions aimed at improving bone health in normally active boys. J Bone Miner Res 18(suppl 2):M151

    Google Scholar 

  49. Magnusson H, Karlsson M (2000) Bone mass, bone size and bone metabolism in male and female athletes. Presented at the Annual Meeting of the Swedish Orthopedic Society, Vaxjo, Sweden, Sept. 8, 2000

  50. Valdimarsson O (2005) Reduced training is associated with increased loss of bone mineral density. J Bone Miner Res, http://www.jbmr-online.com

  51. Duan Y, Parfitt A, Seeman E (1999) Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res 14:1796–1802

    CAS  PubMed  Google Scholar 

  52. Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357

    Article  CAS  PubMed  Google Scholar 

  53. Kontulainen S, Sievanen H, Kannus P, Pasanen M, Vuori I (2003) Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res 18:352–359

    PubMed  Google Scholar 

  54. Zebaze RMWF, Juliano-Burns S, Evans A, Seeman E (2004) The femoral neck is ellipsoid: the assumption of circularity or parallelepipedal shape introduces errors in volume and volumetric bone mineral density. J Bone Miner Res 19(suppl 1):366

    Google Scholar 

Download references

Acknowledgment

Financial support for this study was received from the Swedish Research Council (K2004-73X-14080-04A), the Center for Athletic Research (121/04), and the Herman Jarnhardt and Region Skane Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ö. Valdimarsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdimarsson, Ö., Linden, C., Johnell, O. et al. Daily Physical Education in the School Curriculum in Prepubertal Girls during 1 Year is Followed by an Increase in Bone Mineral Accrual and Bone Width—Data from the Prospective Controlled Malmö Pediatric Osteoporosis Prevention Study. Calcif Tissue Int 78, 65–71 (2006). https://doi.org/10.1007/s00223-005-0096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-005-0096-6

Keywords

Navigation