Prevention of Bone Loss by Phloridzin, an Apple Polyphenol, in Ovariectomized Rats under Inflammation Conditions


Aging and sex hormones related changes lead to inflammatory and oxidant conditions, which are involved in the pathogenesis of osteoporosis. Recent studies have suggested that polyphenols may exert a protective effect in such conditions. We assessed the effect of phloridzin (Phlo), a flavonoid exclusively found in apple, on bone metabolism in ovariectomized (OVX) or sham-operated (SH) rats with and without inflammation. Six-month-old Wistar rats were allocated to two equal groups that received either a control diet or a diet supplemented with 0.25% Phlo for 80 days. Three weeks before necropsy, inflammation was induced by subcutaneous injection of talc in 10 animals of each group. At necropsy, ovariectomy decreased both total (T-BMD) and metaphyseal (M-BMD) femoral bone mineral density (P < 0.01). Inflammation conditions, checked by an increase in the spleen weight and α1-acid glycoprotein concentration in OVX rats, exacerbated the decrease in T-BMD (g/cm2) (as well as M-BMD) observed in castrated animals (P < 0.05). Daily Phlo intake prevented ovariectomy-induced bone loss in conditions of inflammation as shown by T-BMD and M-BMD (P < 0.05). At the diaphyseal site, BMD was improved by Phlo in OVX rats with or without inflammation (P < 0.05). These results could be explained by changes in bone remodeling as the increased urinary deoxypyridinoline excretion in OVX and OVXinf animals was prevented by the polyphenol-rich diet (P < 0.001), while plasma osteocalcin concentration was similar in all experimental groups. In conclusion, Phlo consumption may provide protection against ovariectomy-induced osteopenia under inflammation conditions by improving inflammation markers and bone resorption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Lindsay R (1992) The growing problem of osteoporosis. Osteoporosis Int 2:267–268

    CAS  Google Scholar 

  2. 2.

    Ralston SH (1994) Analysis of gene expression in human bone biopsies by polymerase chain reaction: evidence for enhanced cytokine expression in postmenopausal osteoporosis. J Bone Miner Res 9:883–890

    PubMed  CAS  Google Scholar 

  3. 3.

    Pacifici R (1998) Cytokines, estrogen, and postmenopausal osteoporosis — the second decade. Endocrinology 139:2659–2661

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Santos-Eggimann B (1997) Demographic trends: implications for prevention in the female population. Ther Umsch 54:431–435

    PubMed  CAS  Google Scholar 

  5. 5.

    Hulley S, Grady D, Bush T, Furberg C, Herrington D, Riggs B, Vittinghoff E, HERS I (1998) Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. JAMA 280:605–613

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Hulley S, Furberg C, Barrett-Connor E, Cauley J, Grady D, Haskell W, Knopp R, Lowery M, Satterfield S, Schrott H, Vittinghoff E, Hunninghake D, HERS II (2002) Noncardiovascular disease outcomes during 6.8 years of hormone therapy. JAMA 288:58–66

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Lacey JV, Mink PJ, Lubin JH, Sherman ME, Troisi R, Hartge P, Schatzkin A, Schairer C (2002) Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA 288:334–341

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Million Women Study (MWS) Collaborators (2003) Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362:419–427

    Google Scholar 

  9. 9.

    Macdonald HM, New SA, Golden MH, Campbell MK, Reid DM (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 9:155–165

    Google Scholar 

  10. 10.

    Horcajada-Molteni MN, Coxam V (2001) Flavonols and isoflavones prevent bone loss in the ovariectomized rat, a model for postmenopausal osteoporosis. In: Burkhardt F, Dawson-Hughes B, Heaney RP (eds) Nutritional aspects of osteoporosis. Academic Press, San Diego, pp 325–340

    Google Scholar 

  11. 11.

    /attel A, Kamel S, Mentaverri R, Lorget F, Prouillet C, Petit JP, Fardelonne P, Brazier M (2003) Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol 65:35–42

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Robbins SP (1994) Biochemical markers for assessing skeletal growth. Eur J Clin Nutr 48:S199–S209

    Google Scholar 

  13. 13.

    Pastoureau P, Chomel A, Bonnet J (1995) Specific evaluation of localized bone mass and bone loss in the rat using dual energy X-ray absorptiometry subregional analysis. Osteoporos Int 5:143–149

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Cook JGH (1975) Factors influencing the assay of creatinine. Ann Clin Biochem 12:219–232

    PubMed  CAS  Google Scholar 

  15. 15.

    Breuille D, Arnal M, Rambourdin F, Bayle G, Levieux D, Obled C (1998) Sustained modifications of protein metabolism in various tissues in a rat model of long-lasting sepsis. Clin Sci (Colch) 94:413–423

    CAS  Google Scholar 

  16. 16.

    Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191

    PubMed  CAS  Google Scholar 

  17. 17.

    Bruunsgaard H, Pedersen M, Pedersen BK (2001) Aging and proinflammatory cytokines. Curr Opin Hematol 8:131–136

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Minne HW, Pfeilschifter J, Scharla S, Mutschelknauss S, Schwarz A, Krempien B, Ziegler R (1984) Inflammation-mediated osteopenia in the rat: a new animal model for pathological loss of bone mass. Endocrinology 115:50–54

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Richard CD, Gauldie J (1995) Role of cytokines in acute-phase response. In: Aggarwal BB, Puri RK (eds) Human cytokines: their role in disease and therapy. Blackwell Science, Cambridge, pp 253–269

  20. 20.

    Cuzzocrea S, Santagati S, Sautebin L, Mazzon E, Calabro I, Caputi AP, Maggi A (2000) 17Beta-estradiol antiinflammatory activity in carrageenan-induced pleurisy. Endocrinology 141:1455–1463

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Marusic A, Kos K, Stavljenic A, Vukicevic S (1990) Talc granulomatosis in the rat. Involvement of bone in the acute-phase response. Inflammation 14:205–216

    CAS  Google Scholar 

  22. 22.

    Fournier T, Medjoubi N, Porquet D (2000) Alpha-1-acid glycoprotein. Biochim Biophys Acta 1482:157–171

    PubMed  CAS  Google Scholar 

  23. 23.

    Vukicevic S, Marusic A, Stavljenic A, Cesnjaj M, Ivankovic D (1994) The role of tumor necrosis factor-alpha in the generation of acute phase response and bone loss in rats with talc granulomatosis. Lab Invest 70:386–391

    PubMed  CAS  Google Scholar 

  24. 24.

    Krempien B, Vukicevic S, Vogel M, Stavljenic A, Buchele R (1988) Cellular basis of inflammation-induced osteopenia in growing rats. J Bone Miner Res 3:573–582

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Escarpa A, Gonzalez MC (1998) High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J Chromatogr A 823:331–337

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Calliste CA, Le Bail JC, Trouillas P, Pouget C, Habrioux G, Chulia AJ, Duroux JL (2001) Chalcones: structural requirements for antioxidant, estrogenic and antiproliferative activities. Anticancer Res 21:3949–3956

    PubMed  CAS  Google Scholar 

  27. 27.

    Miksicek RJ (1993) Commonly occurring plant flavonoids have estrogenic activity. Mol Pharmacol 44:37–43

    PubMed  CAS  Google Scholar 

  28. 28.

    Fritsche S, Steinhart H (1999) Occurrence of hormonally active compounds in food: a review. Eur Food Res Technol 209:153–179

    CAS  Google Scholar 

  29. 29.

    Coxam V, Bowman BM, Mecham M, Roth CM, Miller MA, Miller SC (1996) Effects of dihydrotestosterone alone and combined with estrogen on bone mineral density, bone growth and formation rates in ovariectomized rats. Bone 19:107–114

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Arjmandi BH, Birnbaum RS, Juma S, Barengolts E, Kukreja SC (2000) The synthetic phytoestrogen, ipriflavone, and estrogen prevent bone loss by different mechanisms. Calcif Tissue Int 66:61–65

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Picherit C, Bennetau-Pelissero C, Chanteranne B, Lebecque P, Davicco MJ, Barlet JP, Coxam V (2001) Soybean isoflavones dose-dependently reduce bone turnover but do not reverse established osteopenia in adult ovariectomized rats. J Nutr 131:723–728

    PubMed  CAS  Google Scholar 

  32. 32.

    Fanti P, Monier-Faugere MC, Geng Z, Schmidt J, Morris PE, Cohen D, Malluche HH (1998) The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats. Osteoporos Int 8:274–281

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Coxam V, Bowman BM, Mecham M, Roth CM, Miller MA, Miller SC (1996) Effects of dihydrotestosterone alone and combined with estrogen on bone mineral density, bone growth, and formation rates in ovariectomized rats. Bone 19:107–114

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Ridgway T, O’Reilly J, West G, Tucker G, Wiseman H (1996) Potent antioxidant properties of novel apple-derived flavonoids with commercial potential as food additives. Biochem Soc Trans 24:39S

    Google Scholar 

  35. 35.

    Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Mody N, Parhami F, Sarafian TA, Demer L (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Seifert MF, Watkins BA (1997) Role of dietary lipid and antioxidants in bone metabolism. Nutr Res 17:1209–1228

    Article  CAS  Google Scholar 

  38. 38.

    Raisz LG, Fall PM (1990) Biphasic effects of prostaglandin E2 on bone formation in cultured fetal rat calvaria: interaction with cortisol. Endocrinology 126:1654–1659

    PubMed  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. Coxam.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Puel, C., Quintin, A., Mathey, J. et al. Prevention of Bone Loss by Phloridzin, an Apple Polyphenol, in Ovariectomized Rats under Inflammation Conditions. Calcif Tissue Int 77, 311–318 (2005).

Download citation

Key words:

  • Phloridzin
  • Bone-sparing effect
  • Ovariectomized rat
  • Inflammation