Skip to main content

Advertisement

Log in

Optimal Prediction of Bone Mineral Density with Ultrasonic Measurements in Excised Human Femur

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone mineral density (BMD) measured with dual energy X-ray absorptiometry (DXA) techniques is the current gold standard for osteoporotic fracture risk prediction. Quantitative ultrasound (QUS) techniques in transmission measurements are, however, increasingly recognized as an alternative approach. It is feasible to select different QUS methods, one type being optimized to assess microarchitectural properties of bone structure and another to assess BMD. Broadband ultrasonic attenuation (BUA) and ultrasonic velocity (UV) measured on the proximal human femur have been shown to be both significantly correlated with BMD. However, a great diversity of algorithms has been reported to measure the time-of-flight used to derive UV values. The purpose of this study was to determine which procedure results in the optimal BMD prediction at the proximal femur from ultrasound measurements. Thirty-eight excised human femurs were measured in transmission with a pair of focused 0.5−MHz central frequency transducers. Two-dimensional scans were performed and radiofrequency (RF) signals were recorded digitally at each scan position. BUA was estimated and eight different signal processing techniques were performed to estimate UV. For each signal-processing technique UV was compared to BMD. We show that the best prediction of BMD was obtained with signal-processing techniques taking into account only the first part of the transmitted signal (r2BMD-SOS = 0.86). Moreover, we show that a linear multiple regression using both BUA and speed of sound (SOS) and applied to site-matched regions of interest improved the accuracy of BMD predictions (r2BMD-SOS/BUA = 0.95). Our results demonstrate that selecting specific signal-processing methods for QUS variables allows optimal assessment of BMD. Correlation is sufficiently high that this specific QUS method can be considered as a good surrogate of BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75

    Article  PubMed  Google Scholar 

  2. Njeh CF, Hans D, Fuerst T, Gluer CC, Genant HK (1999) Quantitative ultrasound: assessment of osteoporosis and bone status. London:Martin Dunitz

    Google Scholar 

  3. Padilla F, Akrout L, Kolta S, Latremouille C, Roux C, Laugier P (2004) In vitro ultrasound measurement at the human femur. Calcif Tissue Int 75:421–430

    Article  PubMed  Google Scholar 

  4. Haïat G, Padilla F, Barkmann R, Kolta S, Latremouille C, Gluer CC, Laugier P (2005) In vitro speed of sound measurement at intact human femur specimens. Ultrasound Med Biol 31: 987–996

    Article  PubMed  Google Scholar 

  5. Barkmann R, Dencks S, Gluer CC. In vitro correlation between ultrasound velocity and bone mineral density both measured at the proximal femur. Presented at Communication at the 16th International Bone Densitometry Workshop [abstract] 20–24 June 2004, Annecy, France, 2004

  6. He YQ, Fan B, Hans D, Li J, Wu CY, Njeh CF, Zhao S, Lu Y, Tsuda-Futami E, Fuerst T, Genant HK (2000) Assessment of a new quantitative ultrasound calcaneus measurement: precision and discrimination of hip fractures in elderly women compared with dual X-ray absorptiometry. Osteoporos Int 11:354–360

    Article  PubMed  Google Scholar 

  7. Diessel E, Fuerst T, Njeh CF, Hans D, Cheng S, Genant HK (2000) Comparison of an imaging heel quantitative ultrasound device (DTU-one) with densitometric and ultrasonic measurements. Br J Radiol 73:23–30

    PubMed  Google Scholar 

  8. Cunningham JL, Fordham JN, Hewitt TA, Speed CA (1996) Ultrasound velocity and attenuation at different skeletal sites compared with bone mineral density measured using dual energy X-ray absorptiometry. Br J Radiol 69:25–32

    PubMed  Google Scholar 

  9. Bouxsein ML, Coan BS, Lee SC (1999) Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone 25:49–54

    Article  PubMed  Google Scholar 

  10. Lochmuller EM, Zeller JB, Kaiser D, Eckstein F, Landgraf J, Putz R, Steldinger R (1998) Correlation of femoral and lumbar DXA and calcaneal ultrasound, measured in situ with intact soft tissues, with the in vitro failure loads of the proximal femur. Osteoporos Int 8:591–598

    Article  PubMed  Google Scholar 

  11. Nicholson PHF, Lowet G, Langton CM, Dequeker J, Van der Perre G (1996) A comparison of time-domain and frequency domain approaches to ultrasonic velocity measurement in trabecular bone. Phys Med Biol 41:2421–2435

    Article  PubMed  Google Scholar 

  12. Wear KA (2001) A numerical method to predict the effects of frequency-dependent attenuation and dispersion on speed of sound estimates in cancellous bone. J Acoust Soc Am 109:1213–1218

    Article  PubMed  Google Scholar 

  13. Haïat G, Padilla F, Cleveland RO, Laugier P (in press) Effects of frequency-dependent attenuation and velocity dispersion on in vitro ultrasound velocity measurements in intact human femur specimens. IEEE Trans on Ultrason Ferroelectr Frequency Contr

  14. Laugier P, Droin P, Laval-Jeantet AM, Berger G (1997) In vitro assessment of the relationship between acoustic properties and bone mass density of the calcaneus by comparison of ultrasound parametric imaging and OCT. Bone 20:157–165

    Article  PubMed  Google Scholar 

  15. Njeh CF, Nicholson PHF, Langton CM (1999) The physics of ultrasound applied to bone. In: Quantitative ultrasound: assessment of osteoporosis and bone status, Njeh CF, Hans D, Fuerst T, Gluer CC, and Genant HK, eds. London: Martin Dunitz, pp. 67–75

    Google Scholar 

  16. Alves JM, Xu W, Lin D, Siffert RS, Ryaby JT, Kaufman JJ (1996) Ultrasonic assessment of human and bovine trabecular bone: a comparison study. IEEE Trans Biomed Eng 43:249–258

    Article  PubMed  Google Scholar 

  17. Trebacz H, Natali A (1999) Ultrasound velocity and attenuation in cancellous bone samples from lumbar vertebra and calcaneus. Osteoporosis Int 9:99–105

    Article  Google Scholar 

  18. Nicholson PH, Muller R, Lowet G, Cheng XG, Hildebrand T, Ruegsegger P, van der Perre G, Dequeker J, Boonen S (1998) Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone? Bone 23:425–431

    Article  PubMed  Google Scholar 

  19. Wear K (2000) Measurements of phase velocity and group velocity in human calcaneus. Ultrasound Med Biol 26:641–646

    Article  PubMed  Google Scholar 

  20. Laugier P, Berger G, Giat P, Bonnin-Fayet P, Laval-Jeantet M (1994) Ultrasound attenuation imaging in the os calcis: an improved method. Ultrason Imag 16:65–76

    Article  Google Scholar 

  21. Khan AA, Bachrach L, Brown JP, Hanley DA, Josse RG, Kendler DL, Leib ES, Lentle BC, Leslie WD, Lewiecki EM, Miller PD, Nicholson RL, O’Brien C, Olszynski WP, Theriault MY, Watts NB (2004) Standards and guidelines for performing central dual-energy x-ray absorptiometry in premenopausal women, men, and children. J Clin Densitom 1:51–64

    Article  Google Scholar 

  22. Wear KA (2000) The effects of frequency-dependant attenuation and dispersion on sound speed measurements: applications in human trabecular bone. IEEE Trans Ultrason Ferroelect Freq Contr 47:265–273

    Article  Google Scholar 

  23. Ho CP, Kim RW, Schaffler MB, Sartoris DJ (1990) Accuracy of dual-energy radiographic absorptiometry of the lumbar spine: cadaver study. Radiology 176:171–173

    PubMed  Google Scholar 

  24. Edmondston SJ, Singer KP, Price RI, Breidahl PD (1993) Accuracy of lateral dual energy X-ray absorptiometry for the determination of bone mineral content in the thoracic and lumbar spine: an in vitro study. Br J Radiol 66:309–313

    PubMed  Google Scholar 

  25. Erman J, Ott SM (1988) Accuracy of dual photon absorptiometry in excised femurs. J Nucl Med 29:1853–1855

    PubMed  Google Scholar 

  26. Laugier P, Fournier B, Berger G (1996) Ultrasound parametric imaging of the calcaneus: in vivo results with a new device. Calcif Tissue Int 58:326–331

    Article  PubMed  Google Scholar 

  27. Chaffai S, Peyrin F, Nuzzo S, Porcher R, Berger G, Laugier P (2002) Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure. Bone 30:229–237

    Article  PubMed  Google Scholar 

  28. Graafmans WC, Van Lingen A, Ooms ME, Bezemer PD, Lips P (1996) Ultrasound measurements in the calcaneus: precision and its relation with bone mineral density of the heel, hip, and lumbar spine. Bone 19:97–100

    Article  PubMed  Google Scholar 

  29. Wear KA, Stuber AP, Reynolds JC (2000) Relationships of ultrasonic backscatter with ultrasonic attenuation, sound speed and bone mineral density in human calcaneus. Ultrasound Med Biol 26:1311–1316

    Article  PubMed  Google Scholar 

  30. Langton CM, Langton DK (2000) Comparison of bone mineral density and quantitative ultrasound of the calcaneus: site-matched correlation and discrimination of axial BMD status. Br J Radiol 73:31–35

    PubMed  Google Scholar 

  31. Cheng S, Suominen H, Ollikainen S, Goll J, Sipila S, Taaffe D, Fuerst T, Njeh CF, Genant HK (1999) Comparison of ultrasound and bone mineral density assessment of the calcaneus with different regions of interest in healthy early menopausal women. J Clin Densitom 2:117–127

    Article  PubMed  Google Scholar 

  32. Louis O, Allein S, Luypaert R, Osteaux M (2000) Quantitative ultrasound of the calcaneus. J Clin Densitom 3:43–48

    Article  PubMed  Google Scholar 

  33. Droin P, Berger G, Laugier P (1998) Velocity dispersion of acoustic waves in cancellous bone. IEEE Trans Ultrason Ferroelec Freq Contr 45:581–592

    Article  Google Scholar 

  34. Wear KA, Garra BS (1998) Assessment of bone density using ultrasonic backscatter. Ultrasound Med Biol 24:689–695

    Article  PubMed  Google Scholar 

  35. Roux C, Robergeot V, Porcher R, Kolta S, Dougados M, L. P. (2001) Ultrasonic backscatter and transmission parameters at the os calcis in postmenauposal osteoporosis. J Bone Miner Res 16:1353–1362

    PubMed  Google Scholar 

  36. Antich PP, Anderson JA, Ashman RB, Dowdey JE, Gonzales J, Murry RC, Zerwekh JE, Pak CY (1991) Measurement of mechanical properties of bone material in vitro by ultrasound reflection: methodology and comparison with ultrasound transmission. J Bone Miner Res 6:417–426

    PubMed  Google Scholar 

  37. Jenson F, Padilla F, Laugier P (2003) Prediction of frequency-dependent ultrasonic backscatter in cancellous bone using statistical weak scattering model. Ultrasound Med Biol 29:455–464

    Article  PubMed  Google Scholar 

  38. Bossy E, Talmant M, Peyrin F, Akrout L, Cloetens P, Laugier P (2004) An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity. J Bone Miner Res 19:1548–1556 Epub 2004 Jun 2

    PubMed  Google Scholar 

  39. Sakata S, Barkmann R, Lochmuller EM, Heller M, Gluer CC (2004) Assessing bone status beyond BMD: evaluation of bone geometry and porosity by quantitative ultrasound of human finger phalanges. J Bone Miner Res 19:924–930. Epub 2004 Jan 27

    PubMed  Google Scholar 

  40. Ashman RB, Rho JY (1988) Elastic modulus of trabecular bone material. J Biomech 21:177–181

    Article  PubMed  Google Scholar 

  41. Njeh CF, Kuo CW, Langton CM, Atrah HI, Boivin CM (1997) Prediction of human femoral bone strength using ultrasound velocity and BMD: an in vitro study. Osteoporosis Int 7:471–477

    Article  Google Scholar 

  42. Bouxsein ML, Radloff SE (1997) Quantitative ultrasound of the calcaneus reflects the mechanical properties of calcaneal trabecular bone. J Bone Miner Res 12:839–846

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the European Commission (Contract no. QLK6-CT-2002−02710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Padilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haïat, G., Padilla, F., Barkmann, R. et al. Optimal Prediction of Bone Mineral Density with Ultrasonic Measurements in Excised Human Femur. Calcif Tissue Int 77, 186–192 (2005). https://doi.org/10.1007/s00223-005-0057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-005-0057-0

Keywords

Navigation