Skip to main content

Advertisement

Log in

Enhancement of Crude Bone Morphogenetic Protein-Induced New Bone Formation and Normalization of Endochondral Ossification by Bisphosphonate Treatment in Osteoprotegerin-Deficient Mice

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoprotegerin (OPG) is a novel secreted member of the tumor necrosis factor receptor family which plays a crucial role in negative regulation of osteoclastic bone resorption. We investigated both the quantity and quality of heterotopic new bone induced by crude bone morphogenetic protein (BMP) as a means of examining bone metabolism by bisphosphonate administration in OPG−/− mice. Four weeks after implantation of crude BMP, the volume of heterotopic new bone in OPG−/− mice without alendronate was significantly less than in wild-type (WT) mice. Alendronate treatment of OPG−/− mice resulted in enhancement of the volume of heterotopic new bone. Histological findings revealed that WT mice showed normal bone formation with persistent cartilage that was interspersed with islands of bone. In contrast, the cartilage was replaced by trabecular bone and bone marrow adipocytes in OPG−/− mice without alendronate. However, some cartilage was still present in OPG−/− mice with alendronate compared to those without alendronate. All bone formation-related parameters and bone resorption-related parameters were significantly lower in OPG−/− mice with alendronate than in those without alendronate. These findings suggest that in stimulated osteoclastogenesis without OPG, osteoinductive activity induced by crude BMP is inhibited and endochondral ossification induced by crude BMP is accelerated. On the other hand, alendronate treatment of OPG−/− mice caused osteoinductive activity induced by crude BMP to increase and endochondral ossification induced by crude BMP to be decelerated. In conclusion, inhibition of stimulated osteoclastogenesis results in the enhancement of new bone formation and normalization of endochondral ossification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Suda T, Takahashi N, Martin TJ (1992) Modulation of osteoclast differentiation. Endocr Rev 13:66–80

    Article  PubMed  Google Scholar 

  2. Roodman GD (1996) Advances in bone biology: the osteoclast. Endocr Rev 17:308–332

    Article  PubMed  Google Scholar 

  3. Ott SM (2002) Histomorphometric analysis of bone remodeling. In: Bilezikian JP, Raisz LG, Rodan GA (eds), Principles of bone biology. Academic Press, New York, pp 303–319

    Google Scholar 

  4. Osier LK, Marks SC (1992) Osteopetrosis. In: Rifkin BR, Gay CV (eds), Biology and physiology of the osteoclasts. CRC Press, Boca Raton, pp 433–453

    Google Scholar 

  5. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  PubMed  Google Scholar 

  6. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  Google Scholar 

  7. Simonet WS, Lacey DL, Dunstan CR, et al. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  Google Scholar 

  8. Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T, Higashio K (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139:1329–1337

    Article  PubMed  Google Scholar 

  9. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12

    PubMed  Google Scholar 

  10. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    PubMed  Google Scholar 

  11. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–615

    Article  PubMed  Google Scholar 

  12. Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, Mumm S (2002) Osteoprotegerin deficiency and juvenile Paget’s disease. N Engl J Med 347:175–184

    Article  PubMed  Google Scholar 

  13. Cundy T, Hegde M, Naot D, Chong B, King A, Wallace R, Mulley J, Love DR, Seidel J, Fawkner M, Banovic T, Callon KE, Grey AB, Reid IR, Middleton-Hardie CA, Cornish J (2002) A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet 11:2119–2127

    Article  PubMed  Google Scholar 

  14. Gennari C, Nuti R, Agnusdei D, Camporeale A, Martini G (1994) Management of osteoporosis and Paget’s disease. An appraisal of the risks and benefits of drug treatment. Drug Saf 11:179–195

    PubMed  Google Scholar 

  15. MacGowan JR, Pringle J, Morris VH, Stamp TC (2000) Gross vertebral collapse associated with long-term disodium etidronate treatment for pelvic Paget’s disease. Skeletal Radiol 29:279–282

    Article  PubMed  Google Scholar 

  16. Urist MR, Huo YK, Brownell AG, Hohl WM, Buyske J, Lietze A, Tempst P, Hunkapiller M, DeLange RJ (1984) Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography. Proc Natl Acad Sci USA 81:371–375

    PubMed  Google Scholar 

  17. Urist MR, Iwata H (1973) Preservation and biodegradation of the morphogenetic property of bone matrix. J Theor Biol 38:155–167

    Article  PubMed  Google Scholar 

  18. Izawa H, Hachiya Y, Kawai T, Muramatsu K, Narita Y, Ban N, Yoshizawa H (2001) The effect of heat-treated human bone morphogenetic protein on clinical implantation. Clin Orthop 390:252–258

    PubMed  Google Scholar 

  19. Miyazawa K, Kawai T, Urist MR (1996) Bone morphogenetic protein-induced heterotopic bone in osteopetrosis. Clin Orthop 324:259–268

    Article  PubMed  Google Scholar 

  20. Miyazawa K, Urist MR (1997) Treatment with recombinant human macrophage colony-stimulating factor resorbs blood clot and restores osteoclastogenesis in heterotopic bone induced by partially purified native bone morphogenetic protein in osteopetrotic (op/op) mice. J Orthop Res 15:456–462

    Article  PubMed  Google Scholar 

  21. Kimmel DB, Jee WSS (1983) Measurements of area, perimeter, and distance: details of data collection in bone histomorphometry. In: Recker RR (ed), Bone histomorphometry. Techniques and interpretation. CRC Press, Boca Raton, pp 89–108

    Google Scholar 

  22. Janckila AJ, Li CY, Lam KW, Yam LT (1978) The cytochemistry of tartrate-resistant acid phosphatase. Technical considerations. Am J Clin Pathol 70:45–55

    PubMed  Google Scholar 

  23. Nakamura M, Udagawa N, Matsuura S, Mogi M, Nakamura H, Horiuchi H, Saito N, Hiraoka BY, Kobayashi Y, Takaoka K, Ozawa H, Miyazawa H, Takahashi N (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144:5441–5449

    Article  PubMed  Google Scholar 

  24. Cundy T, Wheadon L, King A (2004) Treatment of idiopathic hyperphosphatasia with intensive bisphosphonate therapy. J Bone Miner Res 19:703–711

    PubMed  Google Scholar 

  25. Reddi AH (1981) Cell biology and biochemistry of endochondral bone development. Coll Relat Res 1:209–226

    PubMed  Google Scholar 

  26. Urist MR, Hernandez A (1974) Excitation transfer in bone. Deleterious effects of cobalt 60 radiation-sterilization of bank bone. Arch Surg 109:586–593

    PubMed  Google Scholar 

  27. Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop 53:243–283

    PubMed  Google Scholar 

  28. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    PubMed  Google Scholar 

  29. Luyten FP, Cunningham NS, Ma S, Muthukumaran N, Hammonds RG, Nevins WB, Woods WI, Reddi AH (1989) Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J Biol Chem 264:13377–13380

    PubMed  Google Scholar 

  30. Yoshikawa H, Nakase T, Myoui A, Ueda T (2004) Bone morphogenetic proteins in bone tumors. J Orthop Sci 9:334–340

    Article  PubMed  Google Scholar 

  31. Wozney JM (1992) The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 32:160–167

    Article  PubMed  Google Scholar 

  32. Schenk R, Eggli P, Fleisch H, Rosini S (1986) Quantitative morphometric evaluation of the inhibitory activity of new aminobisphosphonates on bone resorption in the rat. Calcif Tissue Int 38:342–349

    PubMed  Google Scholar 

  33. Fleisch H (1998) Bisphosphonates: mechanisms of action. Endocr Rev 19:80–100

    Article  PubMed  Google Scholar 

  34. Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS (2004) Osteoblast proliferation and maturation by bisphosphonates. Biomaterials 25:4105–4115

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the High-Tech Research Center Project for Aichi Gakuin University, with matching fund subsidy from the Ministry of Education, Culture, Sports, Science and Technology (Japan, 2002–2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tabuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabuchi, M., Miyazawa, K., Kimura, M. et al. Enhancement of Crude Bone Morphogenetic Protein-Induced New Bone Formation and Normalization of Endochondral Ossification by Bisphosphonate Treatment in Osteoprotegerin-Deficient Mice. Calcif Tissue Int 77, 239–249 (2005). https://doi.org/10.1007/s00223-004-0223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-004-0223-9

Keywords

Navigation