Calcified Tissue International

, Volume 73, Issue 5, pp 423–432 | Cite as

Risedronate Preserves Bone Architecture in Early Postmenopausal Women In 1 Year as Measured by Three-Dimensional Microcomputed Tomography

  • T. E. Dufresne
  • P. A. Chmielewski
  • M. D. Manhart
  • T. D. Johnson
  • B. Borah
Clinical Investigations


Risedronate reduces the risk of vertebral fractures by up to 70% within the first year of treatment. Increases in bone mineral density or decreases in bone turnover markers explain only a portion of the anti-fracture effect, suggesting that other factors, such as changes in trabecular bone architecture, also play a role. Our objective was to determine the effects of risedronate on bone architecture by analyzing iliac crest bone biopsy specimens using three-dimensional microcomputed tomography (3-D µCT). Biopsy specimens were obtained at baseline and after 1 year of treatment from women enrolled in a double-blind, placebo-controlled study of risedronate 5 mg daily for the prevention of early postmenopausal bone loss. Trabecular architecture deteriorated in the placebo group (n = 12), as indicated by a 20.3% decrease in bone volume (25.1% vs. 20.0%, P = 0.034), a 13.5% decrease in trabecular number (1.649 vs. 1.426 mm−1, P = 0.052), a 13.1% increase in trabecular separation (605 vs. 684 µm, P = 0.056), and an 86.2% increase in marrow star volume (3.251 vs. 6.053 mm3, P = 0.040) compared with baseline values. These changes in architectural parameters occurred in the presence of a concomitant decrease from baseline in lumbar spine bone mineral density (−3.3%, P = 0.002), as measured by dual energy x-ray absorptiometry. There was no statistically significant (P < 0.05) deterioration in the risedronate-treated group (n = 14) over the 1-year treatment period. Comparing the actual changes between the two groups, the placebo group experienced decreases in bone volume (placebo, −5.1%; risedronate, +3.5%; P = 0.011), trabecular thickness (placebo, −20 µm; risedronate, +23 µm; P = 0.032), and trabecular number (placebo, −0.223 mm−1; risedronate, +0.099 mm−1; P = 0.010), and increases in percent plate (placebo, +2.79%; risedronate, −3.23%; P = 0.018), trabecular separation (placebo, +79 µm; risedronate, −46 µm; P = 0.010) and marrow star volume (placebo, +2.80 mm3 ; risedronate, −2.08mm3; P = 0.036), compared with the risedronate group. These data demonstrate that trabecular architecture deteriorated significantly in this cohort of early postmenopausal women, and that this deterioration was prevented by risedronate. Although there is no direct link in this study between fracture and preservation of architecture, it is reasonable to infer that the preservation of bone architecture may play a role in risedronate’s anti-fracture efficacy.


Bone loss Risedronate Osteoporosis Trabecular architecture Microcomputed tomography 


  1. 1.
    Cummings, SR, Black, DM, Vogt, TM 1996Changes in BMD substantially underestimate the anti-fracture efficacy of alendronate and other anti-resorptive drugs.J Bone Miner Res11S102Google Scholar
  2. 2.
    Sarkar, S, Mitlak, BH, Wong, M, Stock, JL, Black, DM, Harper, KD 2002Relationship between bone mineral density and incident vertebral fracture risk with raloxifene therapy.J Bone Miner Res17110PubMedGoogle Scholar
  3. 3.
    Watts, N, Bockman, R, Smith, C, Li, Z, Eastell, R, Pack, S, Lindsay, R 2000BMD changes explain only a fraction of the observed fracture risk reduction in risedronate-treated patients.Osteoporos Int(suppl 2)546, S203Google Scholar
  4. 4.
    Riggs, BL, Melton III, LJ, O’Fallon, WM 1996Drug therapy for vertebral fractures in osteoporosis: evidence that decreases in bone turnover and increases in bone mass both determine antifracture efficiency.Bone18197S201SCrossRefPubMedGoogle Scholar
  5. 5.
    Parfitt, AM 2002 1996

    Skeletal heterogeneity and the purpose of bone remodeling: Implications for the understanding of osteoporosis.

    Marcus, RFeldman, DKelsey, J eds. Osteoporosis.Academic PressSan Diego, CA, USA315329
    Google Scholar
  6. 6.
    Chestnut III, CH, Rosen, CJ 2001Reconsidering the effects of antiresorptive therapies in reducing osteoporotic fracture.J Bone Miner Res1621632172PubMedGoogle Scholar
  7. 7.
    Turner, CH 2002Biomechanics of bone: determinants of skeletal fragility and bone quality.Osteoporos Int1397104PubMedGoogle Scholar
  8. 8.
    Harris, ST, Watts, NB, Genant, HK,  et al. 1999Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis.JAMA28213441352for the Vertebral Efficacy With Risedronate Therapy (VERT) Study GroupPubMedGoogle Scholar
  9. 9.
    Reginster, J-Y, Minne, HW, Sorensen, OH,  et al. 2000Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis.Osteoporos Int118391on behalf of the Vertebral Efficacy with Risedronate Therapy (VERT) Study GroupPubMedGoogle Scholar
  10. 10.
    Wallach, S, Cohen, S, Reid, DM,  et al. 2000Effects of risedronate treatment on bone density and vertebral fracture in patients on corticosteroid therapy.Calcif Tissue Int67277285CrossRefPubMedGoogle Scholar
  11. 11.
    Li, Z, Meredith, MP, Hoseyni, M 2001A method to assess the proportion of treatment effect explained by a surrogate endpoint.Stat in Med2031753188CrossRefGoogle Scholar
  12. 12.
    Eastell, R, Barton, I, Hannon, RA, Chines, A, Garnero, P, Delmas, PD 2003Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate.J Bone Miner Res1810511056PubMedGoogle Scholar
  13. 13.
    Parfitt, AM 1992Implications of architecture for the pathogenesis and prevention of vertebral fracture.Bone13S41S47Google Scholar
  14. 14.
    Dempster, DW, Cosman, F, Kurland, ES,  et al. 2001Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study.J Bone Miner Res1618461853PubMedGoogle Scholar
  15. 15.
    Nuzzo, R, Lafage-Proust, MH, Martin-Badosa, E, Boivin, G, Thomas, T, Alexandre, C, Peyrin, F 2002Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment.J Bone Miner Res1713721382PubMedGoogle Scholar
  16. 16.
    Mortensen, L, Charles, P, Bekker, PJ, Digennaro, J, Johnston, CC 1998Risedronate increases bone mass in an early postmenopausal population: two years of treatment plus one year of follow-up.J Clin Endocrinol Metab83396402PubMedGoogle Scholar
  17. 17.
    Eriksen, EF 1986Normal and pathological remodeling of human trabecular bone: three-dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease.Endocr Rev7379408PubMedGoogle Scholar
  18. 18.
    Ruegsegger, P, Koller, B, Muller, R 1996A microtomographic system for the nondestructive evaluation of bone architecture.Calcif Tissue Int582429CrossRefPubMedGoogle Scholar
  19. 19.
    Chmielewski PA (1999) Validation of a micro-CT system for the 3-D measurement of bone. Presented at the VIIIth Congress of the International Society of Bone Morphometry. Scottsdale, AZ, Oct 6–10, 1999Google Scholar
  20. 20.
    Dufresne, TE 1998Segmentation techniques for analysis of bone by three-dimensional computed tomographic imaging.Technol Health Care6351359PubMedGoogle Scholar
  21. 21.
    Hildebrand, T, Ruegsegger, P 1997A new method for the model-independent assessment of thickness in three-dimensional images.J Microsc1856775CrossRefGoogle Scholar
  22. 22.
    Hildebrand, T, Laib, A, Muller, R, Dequeker, J, Ruegsegger, P 1999Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus.J Bone Miner Res1411671174PubMedGoogle Scholar
  23. 23.
    Odgaard, A, Gundersen, HJ 1993Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions.Bone14173182PubMedGoogle Scholar
  24. 24.
    Vesterby, A 1993Marrow space star volume can reveal change of trabecular connectivity.Bone14193197PubMedGoogle Scholar
  25. 25.
    Borah, B, Dufresne, TE, Cockman, MD, Gross, GJ, Sod, EW, Myers, WR, Combs, KH, Higgins, RE, Pierce, SA, Stevens, ML 2000Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling.J Bone Miner Res1517861797PubMedGoogle Scholar
  26. 26.
    Borah, B, Dufresne, TE, Chmielewski, PA, Gross, GJ, Prenger, MC, Phipps, RJ 2002Risedronate preserves trabecular architecture and increases bone strength in vertebra of ovariectomized minipigs as measured by 3-D microcomputed tomography.J Bone Miner Res1711391147PubMedGoogle Scholar
  27. 27.
    Dempster, DW 1995

    Bone remodeling. Osteoporosis.

    Riggs, BLMelton III, LJ eds. Etiology diagnosis and management, 2nd ed.Lippincott_RavenPhiladelphia6791
    Google Scholar
  28. 28.
    Kanis, J 1996Textbook of osteoporosis.Blackwell Science LtdCambridge, MassGoogle Scholar
  29. 29.
    Parfitt, AM, Mathews, CH, Villanueva, AR, Kleerekoper, M, Frame, B, Rao, DS 1983Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss.J Clin Invest7213961409PubMedGoogle Scholar
  30. 30.
    Heaney, RP, Yates, AJ, Santora II, AC 1997Bisphosphonate effects and the bone remodeling transient.J Bone Miner Res1211431151PubMedGoogle Scholar
  31. 31.
    Delmas, PD 2000How does anti-resorptive therapy decrease the risk of fracture in women with osteoporosis.Bone2713CrossRefPubMedGoogle Scholar
  32. 32.
    Boivin, GY, Chavassieux, PM, Santora, AC, Yates, J, Meunier, PJ 2000Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women.Bone27687694Google Scholar
  33. 33.
    Roschger, P, Rinnerthaler, S, Yates, J, Rodan, GA, Fratzl, P, Klaushofer, K 2001Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women.Bone29185191CrossRefPubMedGoogle Scholar
  34. 34.
    Day J, Ding M, Bednarz P, et al. (2002) Transactions of the 48th Annual Orthopaedic Research Society Meeting, 27:85Google Scholar
  35. 35.
    Silva, MJ, Gibson, LJ 1997Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microarchitecture.Bone21191199CrossRefPubMedGoogle Scholar
  36. 36.
    Chappard, D, Legrand, E, Basle, MF, Fromont, P, Racineux, JL, Rebel, A, Audran, M 1996Altered trabecular architecture induced by corticosteroids: a bone histomorphometric study.J Bone Miner Res11676685PubMedGoogle Scholar
  37. 37.
    Ulrich, D, van Rietbergen, B, Laib, A, Ruegsegger, P 1999The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone.Bone255560CrossRefPubMedGoogle Scholar
  38. 38.
    Borah, B, Dufresne, TE, Chmielewski, PA, Prenger, MC, Eriksen, EF 2001Risedronate (Ris) preserves bone architecture in osteoporotic postmenopausal women as measured by 3-D microcomputed tomography (abstract).J Bone Miner Res16S218Google Scholar
  39. 39.
    Eriksen, E, Melsen, F, Sod, E, Barton, I, Chines, A 2002Effects of long-term risedronate on bone quality and bone turnover in women with postmenopausal osteoporosis.Bone31620625CrossRefPubMedGoogle Scholar
  40. 40.
    Jiang, Y, Zhao, J, Eriksen, EF, Wang, O, Genant, HK, Mitlak, BH 2002Improved 3-dimensional microarchitecture of cancellous and cortical bone in a multicenter, double-blind, randomized and placebo-controlled study of Teriparatide [rhPTH(1-34) (abstract).J Bone Miner Res17S135Google Scholar
  41. 41.
    Meunier, P, Courpron, P, Edouard, C, Bernard, J, Bringuner, J, Vignon, G 1973Physiological senile involution and pathological rarefaction of bone.Clin Endocrinol Metab2239256PubMedGoogle Scholar
  42. 42.
    Oleksik, A, Ott, SM, Vedi, S, Bravenboer, N, Compston, J, Lips, P 2000Bone structure in patients with low bone mineral density with and without vertebral fractures.J Bone Miner Res1513681375PubMedGoogle Scholar
  43. 43.
    Kimmel, DB, Recker, RR, Gallagher, JC, Vaswani, AS, Aloia, JF 1990A comparison of iliac bone histomorphometric data in post-menopausal osteoporotic and normal subjects.Bone Miner11217235PubMedGoogle Scholar
  44. 44.
    Kleerekoper, M, Villanueva, AR, Stanciu, J, Rao, DS, Parfitt, AM 1985The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures.Calcif Tissue Int37594597PubMedGoogle Scholar
  45. 45.
    Mosekilde, L, Viidik, A, Mosekilde, L 1985Correlation between the compressive strength of iliac crest and vertebral trabecular bone in normal individuals.Bone6291295PubMedGoogle Scholar
  46. 46.
    Delmas, PD 2002Different effects of antiresorptive therapies on vertebral and nonvertebral fractures in postmenopausal osteoporosis.Bone301417CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • T. E. Dufresne
    • 1
  • P. A. Chmielewski
    • 1
  • M. D. Manhart
    • 1
  • T. D. Johnson
    • 1
  • B. Borah
    • 1
  1. 1.Procter & Gamble Pharmaceuticals, Cincinnati, OH 45040USA

Personalised recommendations