Skip to main content

Advertisement

Log in

Differences in Sialic Acid Residues Among Bone Alkaline Phosphatase Isoforms: A Physical, Biochemical, and Immunological Characterization

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

High-performance liquid chromatography (HPLC) separates three human bone alkaline phosphatase (BALP) isoforms in serum; two major BALP isoforms, B1 and B2, and a minor fraction, B/I, which is composed on average of 70% bone and 30% intestinal ALP. The current studies were intended to identify an in vitro source of the BALP isoforms for physical, biochemical, and immunological characterizations. The three BALP isoforms were identified in extracts of human osteosarcoma (SaOS-2) cells, by HPLC, after separation by anion-exchange chromatography. All three BALP isoforms were similar with respect to freeze-thaw stability, solubility, heat inactivation, and inhibition by L-phenylalanine, L-homoarginine, and levamisole. The isoforms were also kinetically similar (i.e., maximal velocity and KM at pH 8.8 and pH 10.0). The isoforms differed, however, with respect to sensitivity to precipitation with wheat germ agglutinin (WGA), P <0.001, but not Concanavalin A. At 3.0 mg/ml, WGA precipitated approximately 25% of B/I but more than 80% of B1 and B2. Molecular weights were estimated by native gradient gel electrophoresis: B/I, 126 kDa; B1, 136 kDa; and B2, 141 kDa. Desialylation with neuraminidase reduced the apparent sizes of B1 and B2 to 127 kDa (i.e., approximately to that of B/I). The total carbohydrate content was calculated to be 18 kDa, 28 kDa, and 33 kDa (i.e., 14%, 21%, and 23%) for the BALP isofonns, B/I, B1, and B2, respectively. The number of sialic acid residues was estimated to be 29 and 45, for each B1 and B2 homodimer, respectively. Apparent discrepancies between these estimates of molecular weight and estimates based on gel filtration chromatography were attributed to nonspecific interactions between carbohydrate residues and the gel filtration beads. All three BALP isoforms showed similar dose-dependant linearity in the commercial Alkphase-B and Tandem-MP Ostase immunoassays, r = 0.944 and r = 0.985, respectively (P <0.001). In summary, our data indicate that B1 and B2 have more (or more reactive) sialic acid residues compared with B/I, which mainly explains the apparent differences in molecular weight. Future investigations will focus on the clinical and functional significance of the revealed differences in sialic acid residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnusson, P., Farley, J. Differences in Sialic Acid Residues Among Bone Alkaline Phosphatase Isoforms: A Physical, Biochemical, and Immunological Characterization . Calcif Tissue Int 71, 508–518 (2002). https://doi.org/10.1007/s00223-001-1137-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-001-1137-4

Keywords

Navigation