Skip to main content
Log in

Chtoucas de Drinfeld et correspondance de Langlands

  • Published:
Inventiones mathematicae Aims and scope

Résumé.

On démontre la correspondance de Langlands pour GL r sur les corps de fonctions. La preuve généralise celle de Drinfeld en rang 2 : elle consiste à réaliser la correspondance en rang r dans la cohomologie ℓ-adique des variétés modulaires de chtoucas de Drinfeld de rang r.

Abstract.

One proves Langlands’ correspondence for GL r over function fields. This is a generalization of Drinfeld’s proof in the case of rank 2 : Langlands’ correspondence is realized in ℓ-adic cohomology spaces of the modular varieties classifying rank r Drinfeld shtukas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 13-X-2000 & 7-VI-2001¶Published online: 12 October 2001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafforgue, L. Chtoucas de Drinfeld et correspondance de Langlands. Invent. math. 147, 1–241 (2002). https://doi.org/10.1007/s002220100174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002220100174

Mots clés

Key words

Code matière AMS (2000)

Navigation