Skip to main content
Log in

How to find all roots of complex polynomials by Newton’s method

  • Published:
Inventiones mathematicae Aims and scope


We investigate Newton’s method to find roots of polynomials of fixed degree d, appropriately normalized: we construct a finite set of points such that, for every root of every such polynomial, at least one of these points will converge to this root under Newton’s map. The cardinality of such a set can be as small as 1.11 d log2 d; if all the roots of the polynomial are real, it can be 1.30 d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations


Additional information

Oblatum 24-II-2000 & 14-II-2001¶Published online: 20 July 2001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubbard, J., Schleicher, D. & Sutherland, S. How to find all roots of complex polynomials by Newton’s method. Invent. math. 146, 1–33 (2001).

Download citation

  • Published:

  • Issue Date:

  • DOI: