Skip to main content
Log in

On the K0 of a p-adic group

  • Published:
Inventiones mathematicae Aims and scope

Abstract.

This article deals with various topics related with Grothendieck groups, invariant distributions, parabolic and compact inductions... for a p-adic group G. The main result is a description of the K 0 of the Hecke algebra ℋ of G in terms of discrete series of Levi subgroups, which has an interesting behavior with regard to parabolic restriction and induction. A similar description – but no more compatible with these parabolic functors – is obtained for \(\overline{\mathcal{H}}\)=ℋ/[ℋ,ℋ] and the Hattori rank map gets an easy description in this dictionary.¶We follow a beautiful idea of J. Bernstein consisting in comparing two natural filtrations on these objects, one of combinatorial nature and one of topological nature. The combinatorial filtrations are related to the structure of Levi subgroupsin G and have counterparts concerning many classical objects of interest as the Grothendieck group of finite length G-modules R(G), the set Ωsr of regular semi-simple conjugacy classes, and the variety Θ(G) of infinitesimal characters. These filtrations will turn out to be “compatible”, in a sense to be specified, with regard to all the classical operations or morphisms between these objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 20-IV-1999 & 22-IX-1999 / Published online: 24 January 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dat, JF. On the K0 of a p-adic group. Invent. math. 140, 171–226 (2000). https://doi.org/10.1007/s002220050360

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002220050360

Keywords

Navigation