Skip to main content
Log in

Rigidity of proper colorings of \({\mathbb {Z}}^{d}\)

  • Published:
Inventiones mathematicae Aims and scope

Abstract

A proper q-coloring of a domain in \({\mathbb {Z}}^d\) is a function assigning one of q colors to each vertex of the domain such that adjacent vertices are colored differently. Sampling a proper q-coloring uniformly at random, does the coloring typically exhibit long-range order? It has been known since the work of Dobrushin that no such ordering can arise when q is large compared with d. We prove here that long-range order does arise for each q when d is sufficiently high, and further characterize all periodic maximal-entropy Gibbs states for the model. Ordering is also shown to emerge in low dimensions if the lattice \({\mathbb {Z}}^d\) is replaced by \({\mathbb {Z}}^{d_1}\times {\mathbb {T}}^{d_2}\) with \(d_1\ge 2\), \(d=d_1+d_2\) sufficiently high and \({\mathbb {T}}\) a cycle of even length. The results address questions going back to Berker and Kadanoff (in J Phys A Math Gen 13(7):L259, 1980), Kotecký (in Phys Rev B 31(5):3088, 1985) and Salas and Sokal (in J Stat Phys 86(3):551–579, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that every coloring in \(\Omega ^{\text {free}}_{[n]^d}\) may be extended to a proper coloring of all of \({\mathbb {Z}}^d\), e.g., by iterated reflections (similarly to Fig. 7A).

References

  1. Alon, N., Briceño, R., Chandgotia, N., Magazinov, A., Spinka, Y.: Mixing properties of colourings of the \({{ Z}}^{d}\) lattice. Comb. Probab. Comput. 30(3), 360–373 (2021)

    MATH  Google Scholar 

  2. Balister, P., Bollobás, B.: Counting regions with bounded surface area. Commun. Math. Phys. 273(2), 305–315 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Banavar, J.R., Grest, G.S., Jasnow, D.: Ordering and phase transitions in antiferromagnetic Potts models. Phys. Rev. Lett. 45(17), 1424–1428 (1980)

    MathSciNet  Google Scholar 

  4. Berker, A.N., Kadanoff, L.P.: Ground-state entropy and algebraic order at low temperatures. J. Phys. A Math. Gen. 13(7), L259 (1980)

    Google Scholar 

  5. Bollobás, B.: The Art of Mathematics: Coffee Time in Memphis. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  6. Brightwell, G.R., Winkler, P.: Random colorings of a Cayley tree. Contemp. Comb. 10, 247–276 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Burton, R.M., Steif, J.E.: Quite weak Bernoulli with exponential rate and percolation for random fields. Stoch. Process. Appl. 58(1), 35–55 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Chung, F.R.K., Graham, R.L., Frankl, P., Shearer, J.B.: Some intersection theorems for ordered sets and graphs. J. Comb. Theory Ser. A 43(1), 23–37 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Dobrushin, R.L.: The description of a random field by means of conditional probabilities and conditions of its regularity. Theor. Probab. Appl. 13, 197–224 (1968)

    MathSciNet  MATH  Google Scholar 

  10. Dobrushin, R.L.: The problem of uniqueness of a Gibbsian random field and the problem of phase transitions. Funct. Anal. Appl. 2(4), 302–312 (1968)

    MathSciNet  MATH  Google Scholar 

  11. Engbers, J., Galvin, D.: H-coloring tori. J. Comb. Theory Ser. B 102(5), 1110–1133 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Engbers, J., Galvin, D.: H-colouring bipartite graphs. J. Comb. Theory Ser. B 102(3), 726–742 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Feldheim, O.N., Spinka, Y.: The growth constant of odd cutsets in high dimensions. Comb. Probab. Comput. 27, 1–20 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Feldheim, O.N., Spinka, Y.: Long-range order in the 3-state antiferromagnetic Potts model in high dimensions. J. Eur. Math. Soc. 21(5), 1509–1570 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Feldheim, O.N., Peled, R.: Rigidity of 3-colorings of the discrete torus. Inst. Henri Poincaré. Ann. l’inst. Henri Poincaré Probab. Stat. 54, 952–994 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Fernández, R., Fröhlich, J., Sokal, A.D.: Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer, Berlin (2013)

    MATH  Google Scholar 

  17. Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  18. Gallavotti, G., Miracle-Solé, S.: Equilibrium states of the Ising model in the two-phase region. Phys. Rev. B 5(7), 2555 (1972)

    Google Scholar 

  19. Galvin, D.: On homomorphisms from the Hamming cube to \({{ Z}}\). Isr. J. Math. 138, 189–213 (2003). https://doi.org/10.1007/BF02783426

    Article  MathSciNet  MATH  Google Scholar 

  20. Galvin, D.: Bounding the partition function of spin-systems. Electron. J. Comb. 13(1), 72 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Galvin, D.: Sampling 3-colourings of regular bipartite graphs. Electron. J. Probab 12, 481–497 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Galvin, D.: Sampling independent sets in the discrete torus. Random Struct. Algorithms 33(3), 356–376 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Galvin, D., Kahn, J.: On phase transition in the hard-core model on \({{ Z}}^{d}\). Comb. Probab. Comput. 13(02), 137–164 (2004)

    MATH  Google Scholar 

  24. Galvin, D., Kahn, J., Randall, D., Sorkin, G.: Phase coexistence and torpid mixing in the 3-coloring model on \({{ Z}}^{d}\). SIAM J. Discrete Math. 29(3), 1223–1244 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Galvin, D., Randall, D.: Torpid mixing of local Markov chains on 3-colorings of the discrete torus. In: Society for Industrial and Applied Mathematics, bookProceedings of the Eighteenth Annual ACM-SIAM symposium on Discrete Algorithms, pp. 376–384 (2007)

  26. Galvin, D., Tetali, P.: On weighted graph homomorphisms. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 63, 97–104 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Galvin, D., Tetali, P.: Slow mixing of Glauber dynamics for the hard-core model on the hypercube. In: Society for Industrial and Applied Mathematics, Book Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 466–467 (2004)

  28. Galvin, D., Tetali, P.: Slow mixing of Glauber dynamics for the hard-core model on regular bipartite graphs. Random Struct. Algorithm 28(4), 427–443 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Georgii, H.-O.: Gibbs Measures and Phase Transitions, vol. 9. Walter de Gruyter, Berlin (2011)

    MATH  Google Scholar 

  30. Goldberg, L.A., Martin, R., Paterson, M.: Strong spatial mixing with fewer colors for lattice graphs. SIAM J. Comput. 35(2), 486–517 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Huang, Y., Chen, K., Deng, Y., Jacobsen, J.L., Kotecký, R., Salas, J., Sokal, A.D., Swart, J.M.: Two-dimensional Potts antiferromagnets with a phase transition at arbitrarily large \(q\). Phys. Rev. E 87(1), 012136 (2013)

    Google Scholar 

  32. Jonasson, J.: Uniqueness of uniform random colorings of regular trees. Stat. Probab. Lett. 57(3), 243–248 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Kahn, J.: An entropy approach to the hard-core model on bipartite graphs. Comb. Probab. Comput. 10(03), 219–237 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Kahn, J.: Range of cube-indexed random walk. Isr. J. Math. 124, 189–201 (2001). https://doi.org/10.1007/BF02772616

    Article  MathSciNet  MATH  Google Scholar 

  35. Kahn, J., Lawrenz, A.: Generalized rank functions and an entropy argument. J. Comb. Theory Ser. A 87(2), 398–403 (1999)

    MathSciNet  MATH  Google Scholar 

  36. Kahn, J., Park, J.: The number of 4-colorings of the Hamming cube. Isr. J. Math. 236, 1–21 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Korshunov, A.D.: On the number of monotone Boolean functions. Probl. Kibern. 38, 5–108 (1981)

    MathSciNet  MATH  Google Scholar 

  38. Korshunov, A.D., Sapozhenko, A.A.: The number of binary codes with distance 2. Probl. Kibern. 40(1), 111–130 (1983). (Russian)

    MathSciNet  MATH  Google Scholar 

  39. Kotecký, R.: Long-range order for antiferromagnetic Potts models. Phys. Rev. B 31(5), 3088 (1985)

    Google Scholar 

  40. Kotecký, R., Sokal, A.D., Swart, J.M.: Entropy-driven phase transition in low-temperature antiferromagnetic Potts models. Commun. Math. Phys. 330(3), 1339–1394 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Lanford, O.E., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13(3), 194–215 (1969)

    MathSciNet  Google Scholar 

  42. Lebowitz, J.L., Mazel, A.E.: Improved Peierls argument for high-dimensional Ising models. J. Stat. Phys. 90(3–4), 1051–1059 (1998). https://doi.org/10.1023/A:1023205826704

    Article  MathSciNet  MATH  Google Scholar 

  43. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13(4), 383–390 (1975)

    MathSciNet  MATH  Google Scholar 

  44. Lubensky, T.C., Isaacson, J.: Statistics of lattice animals and dilute branched polymers. Phys. Rev. A 20(5), 2130 (1979)

    Google Scholar 

  45. Lubetzky, E., Zhao, Y.: On replica symmetry of large deviations in random graphs. Random Struct. Algorithms 47(1), 109–146 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Madiman, M., Tetali, P.: Information inequalities for joint distributions, with interpretations and applications. IEEE Trans. Inf. Theory 56(6), 2699–2713 (2010)

    MathSciNet  MATH  Google Scholar 

  47. McEliece, R.: The Theory of Information and Coding, vol. 3. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  48. Meyerovitch, T., Pavlov, R.: On independence and entropy for high-dimensional isotropic subshifts. Proc. Lond. Math. Soc. 109, 921–945 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Misiurewicz, M.: A short proof of the variational principle for a \({{ Z}}_+^{N}\)-action on a compact space. Astérisque 40, 147–157 (1975)

    MathSciNet  Google Scholar 

  50. Peierls, R.: On Ising’s model of ferromagnetism. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 32, pp. 477–481. Cambridge University Press (1936)

  51. Peled, R.: High-dimensional Lipschitz functions are typically flat. Ann. Probab. 45(3), 1351–1447 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Peled, R., Samotij, W.: Odd cutsets and the hard-core model on \({{\bf Z}}^{d}\). Inst. Henri Poincaré Ann. l’inst. Henri Poincaré Probab. Stat. 50, 975–998 (2014)

    MATH  Google Scholar 

  53. Peled, R., Spinka, Y.: A condition for long-range order in discrete spin systems with application to the antiferromagnetic Potts model (2017). arXiv preprint arXiv:1712.03699

  54. Peled, R., Spinka, Y.: Long-range order in discrete spin systems (2020). arXiv preprint arXiv:2010.03177

  55. Pirogov, S.A., Sinai, Y.G.: Phase diagrams of classical lattice systems. Theor. Math. Phys. 25(3), 1185–1192 (1975)

    MathSciNet  Google Scholar 

  56. Pirogov, S.A., Sinai, Y.G.: Phase diagrams of classical lattice systems continuation. Theor. Math. Phys. 26(1), 39–49 (1976)

    MathSciNet  Google Scholar 

  57. Qin, M.P., Chen, Q.N., Xie, Z.Y., Chen, J., Yu, J.F., Zhao, H.H., Normand, B., Xiang, T.: Partial long-range order in antiferromagnetic Potts models. Phys. Rev. B 90(14), 144424 (2014)

    Google Scholar 

  58. Rahman, S., Rush, E., Swendsen, R.H.: Intermediate-temperature ordering in a three-state antiferromagnetic Potts model. Phys. Rev. B 58(14), 9125 (1998)

    Google Scholar 

  59. Salas, J., Sokal, A.D.: Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem. J. Stat. Phys. 86(3), 551–579 (1997)

    MathSciNet  MATH  Google Scholar 

  60. Sapozhenko, A.A.: The number of antichains in ranked partially ordered sets. Diskretn. Mat. 1(1), 74–93 (1989)

    MathSciNet  Google Scholar 

  61. Sapozhenko, A.A.: On the number of connected subsets with given cardinality of the boundary in bipartite graphs, Metody Diskretnogo. Analiza 45, 42–70 (1987). (Russian)

    MathSciNet  MATH  Google Scholar 

  62. Sapozhenko, A.A.: On the number of antichains in multilevelled ranked posets. Appl. Discrete Math. 1(2), 149–170 (1991)

    MathSciNet  MATH  Google Scholar 

  63. Slade, G.: Lattice trees, percolation and super-Brownian motion. In: Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten, Basel (1999)

  64. Slade, G.: The Lace Expansion and Its Applications: Ecole d’eté de Probabilités de Saint-Flour xxxiv-2004. Springer, Berlin (2006)

    MATH  Google Scholar 

  65. Timár, Á.: Boundary-connectivity via graph theory. Proc. Am. Math. Soc. 141(2), 475–480 (2013)

    MathSciNet  MATH  Google Scholar 

  66. Vigoda, E.: Improved bounds for sampling colorings. J. Math. Phys. 41(3), 1555–1569 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Raimundo Briceño, Nishant Chandgotia, Ohad Feldheim and Wojciech Samotij for early discussions on proper colorings and other graph homomorphisms. We are grateful to Christian Borgs for valuable advice on the way to present the material of this paper and its companion [54]. We thank Michael Aizenman, Jeff Kahn, Eyal Lubetzky, Dana Randall, Alan Sokal, Prasad Tetali and Peter Winkler for useful discussions and encouragement. The presentation benefited significantly from the insightful comments of three anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Peled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of both authors was supported by the Israel Science Foundation Grant 861/15 and the European Research Council starting Grant 678520 (LocalOrder). Research of Y.S. was additionally supported by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peled, R., Spinka, Y. Rigidity of proper colorings of \({\mathbb {Z}}^{d}\). Invent. math. 232, 79–162 (2023). https://doi.org/10.1007/s00222-022-01164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-022-01164-3

Navigation