Skip to main content
Log in

On the existence of supporting broken book decompositions for contact forms in dimension 3

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that in dimension 3 every nondegenerate contact form is carried by a broken book decomposition. As an application we obtain that on a closed 3-manifold, every nondegenerate Reeb vector field has either two or infinitely many periodic orbits, and two periodic orbits are possible only on the tight sphere or on a tight lens space. Moreover we get that if M is a closed oriented 3-manifold that is not a graph manifold, for example a hyperbolic manifold, then every nondegenerate Reeb vector field on M has positive topological entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alves, M.: Legendrian contact homology and topological entropy. J. Topol. Anal. 11(1), 53–108 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, M., Colin, V., Honda, K.: Topological entropy for Reeb vector fields in dimension three via open book decompositions. J. École Polytechnique 6, 119–148 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, E., Honda, K.: Definition of cylindrical contact homology in dimension three. J. Top. 11(4), 1002–1053 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bowen, R.: Topological entropy and axiom A, 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) pp. 23–41 Amer. Math. Soc., Providence, R.I

  5. Burns, K., Weiss, H.: A geometric criterion for positive topological entropy. Commun. Math. Phys. 172, 95–118 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colin, V., Ghiggini, P., Honda, K.: Embedded contact homology and open book decompositions. Preprint arXiv:1004.2942 (2010)

  7. Colin, V., Ghiggini, P., Honda, K.: The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I. Preprint arXiv:1208.1074 (2012)

  8. Colin, V., Ghiggini, P., Honda, K.: The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions II. Preprint arXiv:1208.1077 (2012)

  9. Colin, V., Ghiggini, P., Honda, K.: The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions III: from hat to plus. Preprint arXiv:1208.1526 (2012)

  10. Colin, V., Honda, K.: Reeb vector fields and open book decompositions. J. Eur. Math. Soc. 15(2), 443–507 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colin, V., Honda, K., Laudenbach, F.: On the flux of pseudo-Anosov homeomorphisms. Algebr. Geom. Topol. 8, 2147–2160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cristofaro-Gardiner, D., Hutchings, M.: From one Reeb orbit to two. J. Differ. Geom. 102, 25–36 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cristofaro-Gardiner, D., Hutchings, M., Pomerleano, D.: Torsion contact forms in three dimensions have two or infinitely many Reeb orbits. Geom. Topol. 23(7), 3601–3645 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Paulo, N.V., Salomão, P.A.S.: Systems of transversal sections near critical energy levels of Hamiltonian systems in \({\mathbb{R} }^4\). Mem. Am. Math. Soc. 252(1202), v+105 (2018)

    Google Scholar 

  15. Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49, p. xiv+472. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  16. Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les surfaces, Séminaire Orsay. Astérisque, 66-67, Société Mathématique de France, Paris. 284 pp. (1979)

  17. Franks, J.: Geodesics on \({\mathbb{S}}^2\) and periodic points of annulus homeomorphisms. Invent. Math. 108(2), 403–418 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Franks, J., Handel, M.: Periodic points of Hamiltonian surface diffeomorphisms. Geom. Topol. 7, 713–756 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fried, D.: Transitive Anosov flows and pseudo-Anosov maps. Topology 22, 299–303 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ginzburg, V., Gürel, B.: The Conley conjecture and beyond. Arnold Math. J. 3(1), 299–337 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ginzburg, V., Hein, D., Hryniewicz, U., Macarini, L.: Closed Reeb orbits on the sphere and symplectically degenerate maxima. Acta Math. Vietnam 38, 55–78 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Giroux, E.: Géométrie de contact : de la dimension trois vers les dimensions supérieures. Proceedings of the ICM, Vol. II (Beijing 2002), Higher Ed. Press, Beijing, pp. 405–414 (2002)

  23. Hofer, H., Kriener, M.: Holomorphic curves in contact dynamics. Notes from 1997 ParkCity Mathematics Institute

  24. Hofer, H., Wysocki, K., Zehnder, E.: Properties of pseudo-holomorphic curves in symplectizations I: asymptotics. Ann. Inst. H. Poincaré Anal. Non Linéaire 13, 337–379 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hofer, H., Wysocki, K., Zehnder, E.: Finite energy foliations of tight three-spheres and Hamiltonian dynamics. Ann. Math. (2) 157(1), 125–255 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hryniewicz, U., Salomão, P.: Global surfaces of section for Reeb flows in dimension three and beyond. Proc. Int. Cong. of Math. – 2018 Rio de Janeiro, Vol. 1, pp. 937–964

  27. Hutchings, M., Nelson, J.: \({\mathbb{S}}^1\)-equivariant contact homology for hypertight contact forms. J. Topol. 15, 1455–1539 (2022)

    Article  MathSciNet  Google Scholar 

  28. Hutchings, M., Taubes, C.H.: The Weinstein conjecture for stable Hamiltonian structures. Geom. Topol. 13, 901–941 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hutchings, M., Taubes, C.H.: Gluing pseudoholomorphic curves along branched covered cylinders II. J. Symplectic Geom. 7, 29–133 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hutchings, M.: Lecture notes on embedded contact homology, Contact and symplectic topology. Bolyai Soc. Math. Stud. 26, 389–484 (2014)

    Article  MATH  Google Scholar 

  31. Hutchings, M.: Quantitative embedded contact homology. J. Differ. Geom. 88(2), 231–266 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Irie, K.: Dense existence of periodic Reeb orbits and ECH spectral invariants. J. Mod. Dyn. 9, 357–363 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Katok, A.: Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math. 51, 137–173 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, vol. 54, p. xviii+802. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  35. Kupka, I.: Contributions à la théorie des champs génériques. Contrib. Differ. Equ. 2, 457–484 (1963)

    MATH  Google Scholar 

  36. Kupka, I.: Contributions à la théorie des champs génériques. Contrib. Differ. Equ. 3, 411–420 (1964)

    MATH  Google Scholar 

  37. Le Calvez, P.: Une version feuilletée équivariante du théorème de translation de Brouwer. Publ. Math. Inst. Hautes Études Sci. 102, 1–98 (2005)

    Article  MATH  Google Scholar 

  38. Le Calvez, P.: Conservative surface homeomorphisms with finitely many periodic points. J. Fixed Point Theory Appl. (2022)

  39. Lima, Y., Sarig, O.: Symbolic dynamics for three-dimensional flows with positive topological entropy. J. Eur. Math. Soc. 21(1), 199–256 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Macarini, L., Schlenk, F.: Positive topological entropy of Reeb flows on spherizations. Math. Proc. Cambridge Philos. Soc. 151, 103–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ozsváth, P., Szabó, Z.: Holomorphic disks and three-manifold invariants: properties and applications. Ann. Math. (2) 159, 1159–1245 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Peixoto, M.: On an approximation Theorem of Kupka and Smale. J. Differ. Equ. 3, 214–227 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  43. Robinson, R.C.: Generic properties of conservative systems. II. Am. J. Math. 92, 897–906 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  44. Siefring, R.: Intersection theory of finite energy surfaces. Ph.D. Thesis, New York University (2005)

  45. Siefring, R.: Relative asymptotic behavior of pseudoholomorphic half-cylinders. Commun. Pure Appl. Math. 61(12), 1631–1684 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Smale, S.: Stable manifolds for differential equations and diffeomorphisms. Ann. Scuola Normale Superiore Pisa 18, 97–116 (1963)

    MathSciNet  MATH  Google Scholar 

  47. Sullivan, D.: A foliation of geodesics is characterized by having no “tangent homologies’’. J. Pure Appl. Algebra 13(1), 101–104 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  48. Taubes, C.H.: The Seiberg-Witten equations and the Weinstein conjecture. Geom. Topol. 11, 2117–2202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Thurston, W.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc. 19(2), 417–431 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  50. Weinstein, A.: On the hypotheses of Rabinowitz’ periodic orbit theorems. J. Differ. Equ. 33, 353–358 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wendl, C.: Lectures on Contact \(3\)-Manifolds, Holomorphic Curves and Intersection Theory, Cambridge Tracts in Mathematics. Cambridge Univ. Press (2020)

Download references

Acknowledgements

We thank Oliver Edtmair, Umberto Hryniewicz, Michael Hutchings, Rohil Prasad and the anonymous referees for useful exchanges and suggestions. V. Colin thanks the ANR Quantact for its support, P. Dehornoy thanks the ANR projects IdEx UGA and Gromeov for their supports, and A. Rechtman thanks the IdEx Unistra, Investments for the future program of the French Government. This project started during the Matrix event “Dynamics, Foliations and Geometry in dimension 3” held at Monash University in 2018. We thank these institutions for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Colin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colin, V., Dehornoy, P. & Rechtman, A. On the existence of supporting broken book decompositions for contact forms in dimension 3. Invent. math. 231, 1489–1539 (2023). https://doi.org/10.1007/s00222-022-01160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-022-01160-7

Mathematics Subject Classification

Navigation