Skip to main content

Closed three-dimensional vacuum static spaces

Abstract

This article is devoted to the study of the closed vacuum static spaces. Based on the argument of maximum principle, we show that three-dimensional closed vacuum static spaces with scalar curvature 6 must be isometric to either the standard unit sphere \({\mathbb {S}}^3(1)\) or a finite quotient of the torus \(\mathbb S^1(\sqrt{1/3})\times {\mathbb {S}}^2(\sqrt{1/3}).\)

This is a preview of subscription content, access via your institution.

References

  1. Ambrozio, L.: On vacuum static three-manifolds with positive scalar curvature. J. Differ. Geom. 107(1), 1–45 (2017)

    MathSciNet  Article  Google Scholar 

  2. Baltazar, H., Ribeiro, J.E.: Remarks on critical metrics of the scalar curvature and volume functionals on compact manifolds with boundary. Pac. J. Math. 297(1), 29–45 (2018)

    MathSciNet  Article  Google Scholar 

  3. Beig, R., Simon, W.: On the uniqueness of static perfect fluids solutions in general relativity. Commun. Math. Phys. 144(2), 373–392 (1992)

    MathSciNet  Article  Google Scholar 

  4. Besse, A.L.: Einstein Manifolds. Springer, New York (1987)

    Book  Google Scholar 

  5. Bessières, L., Lafontaine, J., Rozoy, L.: Courbure scalaire et trous noirs. Séminaire de Théorie spectrale et Géométrie, Institut Fourier (2000)

  6. Bourguignon, J.-P.: Une stratification de l’espace des structures riemanniennes. Compos. Math. 30, 1–41 (1975)

    MathSciNet  MATH  Google Scholar 

  7. Cao, H.-D., Chen, B.-L., Zhu, X.-P.: Recent developments on Hamilton’s Ricci flow. Surveys in differential geometry. Vol. XII. Geometric flows, Surveys in Differential Geometry, vol. 12, pp. 47–112. International Press, Somerville (2008)

  8. Cao, H.-D., Chen, Q.: On locally conformally flat gradient steady Ricci solitons. Trans. Am. Math. Soc. 364, 2377–2391 (2012)

    MathSciNet  Article  Google Scholar 

  9. Cao, H.-D., Chen, Q.: On Bach-flat gradient shrinking Ricci solitons. Duke Math. J. 162, 1149–1169 (2013)

    MathSciNet  Article  Google Scholar 

  10. Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214(1), 137–189 (2000)

    MathSciNet  Article  Google Scholar 

  11. Fischer, A., Marsden, J.: Linearization stability of nonlinear partial differential equations. Proc. Symp. Pure Math. 27, 219–262 (1975)

    MathSciNet  Article  Google Scholar 

  12. Hwang, S., Yun, G.: Vacuum static spaces with vanishing of complete divergence of Bach tensor and Weyl tensor. J. Geom. Anal. 31, 3060–3084 (2021)

    MathSciNet  Article  Google Scholar 

  13. Hwang, S., Yun, G.: Vacuum Static Spaces with Positive Isotropic Curvature. arXiv:2103.15818

  14. Ivey, T.: New examples of complete Ricci solitons. Proc. Am. Math. Soc. 122(1), 241–245 (1994)

    MathSciNet  Article  Google Scholar 

  15. Kim, J.: On a classification of 4-d gradient Ricci solitons with harmonic Weyl curvature. J. Geom. Anal. 27(2), 986–1012 (2017)

    MathSciNet  Article  Google Scholar 

  16. Kim, J., Shin, J.: Four-dimensional static and related critical spaces with harmonic curvature. Pac. J. Math. 295(2), 429–462 (2018)

    MathSciNet  Article  Google Scholar 

  17. Kobayashi, O.: A differential equation arising from scalar curvature function. J. Math. Soc. Jpn. 34(4), 665–675 (1982)

    MathSciNet  Article  Google Scholar 

  18. Kobayashi, O., Obata, M.: Conformally-Flatness and Static Space-Time. Manifolds and Lie Groups, Progress in Mathematics, vol. 14, pp. 197–206. Birkhäuser, Basel (1981)

    Google Scholar 

  19. Lafontaine, J.: Sur la géomérie d’une généralisation de l’équation différentielle d’Obata. J. Math. Pures Appl. 62, 63–72 (1983)

    MathSciNet  MATH  Google Scholar 

  20. Lafontaine, J.: A remark about static space times. J. Geom. Phys. 59, 50–53 (2009)

    MathSciNet  Article  Google Scholar 

  21. Li, F.J.: Vacuum Static Spaces with Harmonic Curvature. arXiv:2102.01280

  22. Li, P.: Geometric Analysis. Cambridge Studies in Advanced Mathematics, vol. 134. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  23. Naber, A.: Noncompact shrinking four solitons with nonnegative curvature. J. Reine Angew. Math. 645, 125–153 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Ni, L., Wallach, N.: On a classification of gradient shrinking solitons. Math. Res. Lett. 15(5), 941–955 (2008)

    MathSciNet  Article  Google Scholar 

  25. Perelman, G.: Ricci flow with surgery on three manifolds. arXiv:math/0303109

  26. Qing, J., Yuan, W.: A note on vacuum statice spaces and related problems. J. Geom. Phys. 74, 18–27 (2013)

    MathSciNet  Article  Google Scholar 

  27. Shen, Y.: A note on Fischer–Marsden’s conjecture. Proc. Am. Math. Soc. 125, 901–905 (1997)

    MathSciNet  Article  Google Scholar 

  28. Xu, X.W., Ye, J.: Conformal vector fields and \({ }_k\)-scalar curvatures. Pac. J. Math. 316(2), 453–473 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by the starting-up research funds through Nanjing University with account No. 020314912205. We would like to express our gratitude to the referee for critical comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Ye, J. Closed three-dimensional vacuum static spaces. Invent. math. (2022). https://doi.org/10.1007/s00222-022-01139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00222-022-01139-4

Mathematics Subject Classification

  • 53C21
  • 53C24
  • 53C25