Abert, M., Bergeron, N., Biringer, I., Gelander, T., Nikolov, N., Raimbault, J., Samet, I.: On the growth of \(L^2\)-invariants for sequences of lattices in Lie groups. Ann. Math. 185, 711–790 (2017)
MathSciNet
Article
Google Scholar
Abert, M., Glasner, Y., Virag, B.: Kesten’s theorem for invariant random subgroups. Duke Math. J. 163, 465–488 (2014)
MathSciNet
Article
Google Scholar
Alekseev, V., Brugger, R.: On invariant random positive definite functions. arXiv:1804.10471
Bader, U., Furman, A.: Boundaries, rigidity of representations, and Lyapunov exponents. Proceedings of the International Congress of Mathematicians–Seoul 2014. Vol. III, 71–96, Kyung Moon Sa, Seoul (2014)
Bader, U., Furman, A.: Super-rigidity and non-linearity for lattices in products. Compos. Math. 156, 158–178 (2020)
MathSciNet
Article
Google Scholar
Bader, U., Gelander, T.: Equicontinuous actions of semisimple groups. Groups Geom. Dyn. 11, 1003–1039 (2017)
MathSciNet
Article
Google Scholar
Bader, U., Shalom, Y.: Factor and normal subgroup theorems for lattices in products of groups. Invent. Math. 163, 415–454 (2006)
MathSciNet
Article
Google Scholar
Bekka, B.: Amenable unitary representations of locally compact groups. Invent. Math. 100, 383–401 (1990)
MathSciNet
Article
Google Scholar
Bekka, B.: Operator-algebraic superridigity for \(\operatorname{SL}_n(\mathbb{Z})\), \(n \ge 3\). Invent. Math. 169, 401–425 (2007)
MathSciNet
Article
Google Scholar
Bekka, B.: Character rigidity of simple algebraic groups. Math. Ann. 378, 1223–1243 (2020)
MathSciNet
Article
Google Scholar
Bekka, B., Francini, C.: Characters of algebraic groups over number fields. arXiv:2002.07497
Bekka, B., Valette, A.: Kazhdan’s property and amenable representations. Math. Z. 212, 293–299 (1993)
MathSciNet
Article
Google Scholar
Borel, A.: Linear algebraic groups. Second edition. Graduate Texts in Mathematics, 126. Springer, New York. xii+288 pp (1991)
Boutonnet, R., Houdayer, C.: Stationary characters on lattices of semisimple Lie groups. Publ. Math. Inst. Hautes Études Sci. 133, 1–46 (2021)
MathSciNet
Article
Google Scholar
Burger, M., Mozes, S.: Lattices in product of trees. Inst. Hautes Études Sci. Publ. Math. 92, 151–194 (2001)
MathSciNet
Article
Google Scholar
Creutz, D., Peterson, J.: Character rigidity for lattices and commensurators. arXiv:1311.4513
Furstenberg, H.: Stiffness of group actions. Lie groups and ergodic theory (Mumbai, 1996), 105–117, Tata Inst. Fund. Res. Stud. Math., 14, Tata Inst. Fund. Res., Bombay (1998)
Gelander, T.: A lecture on invariant random subgroups. New directions in locally compact groups, 186–204, London Math. Soc. Lecture Note Ser., 447, Cambridge Univ. Press, Cambridge (2018)
Glasner, E., Weiss, B.: Uniformly recurrent subgroups. Recent trends in ergodic theory and dynamical systems, 63–75, Contemp. Math., 631, Amer. Math. Soc., Providence, RI (2015)
Haagerup, U.: The standard form of von Neumann algebras. Math. Scand. 37, 271–283 (1975)
MathSciNet
Article
Google Scholar
Hartman, Y., Kalantar, M.: Stationary \({\operatorname{C}}^*\)-dynamical systems. To appear in J. Eur. Math. Soc. (JEMS) arXiv:1712.10133
Ikunishi, A.: The W\(^*\)-dynamical system associated with a C\(^*\)-dynamical system, and unbounded derivations. J. Funct. Anal. 79, 1–8 (1988)
MathSciNet
Article
Google Scholar
Omer Lavi, A.L.: Characters of the group \(\operatorname{EL}_d(R)\) for a commutative Noetherian ring \(R\). arXiv:2007.15547
Margulis, G.A.: Discrete subgroups of semisimple Lie groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17. Springer, Berlin. x+388 pp (1991)
Nevo, A., Zimmer, R.J.: Homogenous projective factors for actions of semi-simple Lie groups. Invent. Math. 138, 229–252 (1999)
MathSciNet
Article
Google Scholar
Nevo, A., Zimmer, R.J.: A structure theorem for actions of semisimple Lie groups. Ann. Math. 156, 565–594 (2002)
MathSciNet
Article
Google Scholar
Peterson, J.: Character rigidity for lattices in higher-rank groups. Preprint (2014)
Peterson, J., Thom, A.: Character rigidity for special linear groups. J. Reine Angew. Math. 716, 207–228 (2016)
MathSciNet
MATH
Google Scholar
Ruane, K.: Dynamics of the action of a CAT(0) group on the boundary. Geom. Dedicata 84, 81–99 (2001)
MathSciNet
Article
Google Scholar
Segal, I.E., von Neumann, J.: A theorem on unitary representations of semisimple Lie groups. Ann. Math. 52, 509–517 (1950)
MathSciNet
Article
Google Scholar
Shalom, Y.: Rigidity of commensurators and irreducible lattices. Invent. Math. 141, 1–54 (2000)
MathSciNet
Article
Google Scholar
Takesaki, M.: Theory of operator algebras. \({\rm II}\). Encyclopaedia of Mathematical Sciences, 125. Operator Algebras and Non-commutative Geometry, 6. Springer, Berlin. xxii+518 pp (2003)
Takesaki, M.: Theory of operator algebras. \({\rm III}\). Encyclopaedia of Mathematical Sciences, 127. Operator Algebras and Non-commutative Geometry, 8. Springer, Berlin. xxii+548 pp (2003)
Wang, P.S.: On isolated points in the dual spaces of locally compact groups. Math. Ann. 218, 19–34 (1975)
MathSciNet
Article
Google Scholar
Weil, A.: Remarks on the Cohomology of Groups. Ann. Math. 80, 149–157 (1964)
MathSciNet
Article
Google Scholar