Skip to main content
Log in

Random integral matrices: universality of surjectivity and the cokernel

  • Published:
Inventiones mathematicae Aims and scope

Abstract

For a random matrix of entries sampled independently from a fairly general distribution in \({{\mathbf {Z}}}\) we study the probability that the cokernel is isomorphic to a given finite abelian group, or when it is cyclic. This includes the probability that the linear map between the integer lattices given by the matrix is surjective. We show that these statistics are asymptotically universal (as the size of the matrix goes to infinity), given by precise formulas involving zeta values, and agree with distributions defined by Cohen and Lenstra, even when the distribution of matrix entries is very distorted. Our method is robust and works for Laplacians of random digraphs and sparse matrices with the probability of an entry non-zero only \(n^{-1+\varepsilon }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basak, A., Rudelson, M.: Invertibility of sparse non-Hermitian matrices. Adv. Math. 310, 426–483 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bhargava, M.: The geometric sieve and the density of squarefree values of invariant polynomials. Preprint arXiv:1402.0031

  3. Bourgain, J., Vu, V., Wood, P.M.: On the singularity probability of discrete random matrices. J. Funct. Anal. 258(2), 559–603 (2010)

    Article  MathSciNet  Google Scholar 

  4. Chinta, G., Kaplan, N., Koplewitz, S.: The cotype zeta function of \({\mathbf{Z}}^d\). Preprint arXiv:1708.08547

  5. Clancy, J., Leake, T., Kaplan, N., Payne, S., Wood, M.M.: On a Cohen–Lenstra heuristic for Jacobians of random graphs. J. Algebraic Combin. 42(3), 701–723 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cohen, H., Lenstra, Jr. H.W.: Heuristics on class groups of number fields. In: Number Theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), volume 1068 of Lecture Notes in Mathematics. Springer, Berlin, pp. 331–762 (1984)

  7. Ekedahl, T.: An infinite version of the Chinese remainder theorem. Comment. Math. Univ. St. Paul. 40(1), 53–59 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Farrell, M., Levine, L.: Co-Eulerian graphs. Proc. Am. Math. Soc. 144, 2847–2860 (2016)

    Article  Google Scholar 

  9. Farrell, M., Levine, L.: Multi-Eulerian tours of directed graphs. Electron. J. Combin. 23(2), 7 (2016)

    Article  MathSciNet  Google Scholar 

  10. Fisher, S.D., Alexander, M.N.: Classroom notes: matrices over a finite field. Am. Math. Mon. 73(6), 639–641 (1966)

    Article  MathSciNet  Google Scholar 

  11. Friedman, E., Washington, L.C.: On the distribution of divisor class groups of curves over a finite field. In: Theorie des nombres (Quebec. PQ, 1987). de Gruyter, Berlin, pp. 227–239 (1989)

  12. Holroyd, A.E., Levine, L., Mészáros, K., Peres, Y., Propp, J., Wilson, D.B.: Chip-firing and rotor-routing on directed graphs. In: In and Out of Equilibrium. 2, Progr. Probab., 60, Birkhäuser, Basel, pp. 331–364

  13. Kahn, J., Komlós, J., Szemerédi, E.: On the probability that a random \(\pm 1\) matrix is singular. J. Am. Math. Soc. 8, 223–240 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Komlós, J.: On the determinant of (0-1)-matrices. Stud. Sci. Math. Hungar. 2, 7–22 (1967)

    MATH  Google Scholar 

  15. Koplewitz, S.: Sandpile groups and the coeulerian property for random directed graphs. Adv. Appl. Math. 90, 145–159 (2017)

    Article  MathSciNet  Google Scholar 

  16. Koplewitz, S.: Random Graphs, Sandpile Groups, and Surjectivity of Random Matrices. Thesis (Ph.D.)-Yale University. 58 pp. ISBN: 978-0355-01826-4 (2017)

  17. Maples, K.: Singularity of Random Matrices Over Finite Fields. Preprint arXiv:1012.2372

  18. Nguyen, H.: Inverse Littlewood–Offord problems and the singularity of random symmetric matrices. Duke Math. J. 161(4), 545–586 (2012)

    Article  MathSciNet  Google Scholar 

  19. Nguyen, H., Paquette, E.: Surjectivity of near square matrices. Combin. Probab. Comput. 29(2), 267–292 (2020)

    Article  MathSciNet  Google Scholar 

  20. Nguyen, H., Vu, V.: Optimal inverse Littlewood–Offord theorems. Adv. Math. 226(6), 5298–5319 (2011)

    Article  MathSciNet  Google Scholar 

  21. Nguyen, P.Q., Shparlinski, I.E.: Counting co-cyclic lattices. SIAM J. Discrete Math. 30(3), 1358–1370 (2016)

    Article  MathSciNet  Google Scholar 

  22. Petrogradsky, V.M.: Multiple zeta functions and asymptotic structure of free abelian groups of finite rank. J. Pure Appl. Algebra 208(3), 1137–1158 (2007)

    Article  MathSciNet  Google Scholar 

  23. Pham, T.V.: Orbits of rotor-router operation and stationary distribution of random walks on directed graphs. Adv. Appl. Math. 70, 45–53 (2015)

    Article  MathSciNet  Google Scholar 

  24. Poonen, B.: Squarefree values of multivariable polynomials. Duke Math. J. 118(2), 353–373 (2003)

    Article  MathSciNet  Google Scholar 

  25. Rudelson, M., Vershynin, R.: The Littlewood–Offord problem and invertibility of random matrices. Adv. Math. 218, 600–633 (2008)

    Article  MathSciNet  Google Scholar 

  26. Stanley, R.: Smith normal form in combinatorics. J. Combin. Theory Ser. A 144, 476–495 (2016)

    Article  MathSciNet  Google Scholar 

  27. Stanley, R., Wang, Y.: The Smith normal form distribution of a random integer matrix. SIAM J. Discrete Math. 31(3), 2247–2268 (2017)

    Article  MathSciNet  Google Scholar 

  28. Tao, T., Vu, V.: On the singularity probability of random Bernoulli matrices. J. A. M. S. 20, 603–673 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Tao, T., Vu, V.: John-type theorems for generalized arithmetic progressions and iterated sumsets. Adv. Math. 219(2), 428–449 (2008)

    Article  MathSciNet  Google Scholar 

  30. Tao, T., Vu, V.: Inverse Littlewood–Offord theorems and the condition number of random matrices. Ann. Math. (2) 169(2), 595–632 (2009)

    Article  MathSciNet  Google Scholar 

  31. Wood, M.M.: The distribution of sandpile groups of random graphs. J. A. M. S. 30, 915–958 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Wood, M.M.: Random integral matrices and the Cohen–Lenstra heuristics. Am. J. Math. 141(2), 383–398 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Wesley Pegden and Philip Matchett Wood for helpful conversations. We are also grateful to Nathan Kaplan, Lionel Levine and Philip Matchett Wood for valuable comments on an earlier version of this manuscript. Finally, we thank the anonymous referees for their careful reading of the paper and highly valuable suggestions and corrections. The first author is partially supported by National Science Foundation grants DMS-1600782 and NSF CAREER DMS-1752345. The second author is partially supported by a Packard Fellowship for Science and Engineering, a Sloan Research Fellowship, National Science Foundation grants DMS-1301690 and DMS-1652116, an NSF Waterman award, and a Vilas Early Career Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoi H. Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.H., Wood, M.M. Random integral matrices: universality of surjectivity and the cokernel. Invent. math. 228, 1–76 (2022). https://doi.org/10.1007/s00222-021-01082-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-021-01082-w

Mathematics Subject Classification

Navigation