Skip to main content

Bessel F-isocrystals for reductive groups

Abstract

We construct the Frobenius structure on a rigid connection \({{\,\mathrm{Be}\,}}_{\check{G}}\) on \({\mathbb {G}}_{m}\) for a split reductive group \(\check{G}\) introduced by Frenkel–Gross. These data form a \(\check{G}\)-valued overconvergent F-isocrystal \({{\,\mathrm{Be}\,}}_{\check{G}}^{\dagger }\) on \({\mathbb {G}}_{m,{\mathbb {F}}_p}\), which is the p-adic companion of the Kloosterman \(\check{G}\)-local system \({{\,\mathrm{Kl}\,}}_{\check{G}}\) constructed by Heinloth–Ngô–Yun. By studying the structure of the underlying differential equation, we calculate the monodromy group of \({{\,\mathrm{Be}\,}}_{\check{G}}^{\dagger }\) when \(\check{G}\) is almost simple (which recovers the calculation of monodromy group of \({{\,\mathrm{Kl}\,}}_{\check{G}}\) due to Katz and Heinloth–Ngô–Yun), and prove a conjecture of Heinloth–Ngô–Yun on the functoriality between different Kloosterman \(\check{G}\)-local systems. We show that the Frobenius Newton polygons of \({{\,\mathrm{Kl}\,}}_{\check{G}}\) are generically ordinary for every \(\check{G}\) and are everywhere ordinary on \(|{\mathbb {G}}_{m,{\mathbb {F}}_p}|\) when \(\check{G}\) is classical or \(G_2\).

This is a preview of subscription content, access via your institution.

Notes

  1. The sum (1.1.2.1) is slightly different from the standard definition by a factor \((-\frac{1}{\sqrt{q}})^{n-1}\).

  2. We adopt the definition of [4], which is different from that of [5] by a Tate twist.

References

  1. Abe, T.: Explicit calculation of Frobenius isomorphisms and Poincaré duality in the theory of arithmetic \(\mathscr {D}\)-modules. Rend. Semin. Mat. Univ. Padova 131, 89–149 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abe, T.: Langlands program for \(p\)-adic coefficients and the petits camarades conjecture. J. Reine Angew. Math. 734, 59–69 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abe, T.: Langlands correspondence for isocrystals and existence of crystalline companion for curves. J. Am. Math. Soc. 31, 921–1057 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abe, T.: Around the nearby cycle functor for arithmetic \(\mathscr {D}\)-modules. Nagoya Math. J. 236, 1–28 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abe, T., Caro, D.: On Beilinson’s equivalence for \(p\)-adic cohomology. Sel. Math. New Ser. 24, 591–608 (2018)

  6. Abe, T., Caro, D.: Theory of weights in \(p\)-adic cohomology. Am. J. Math. 140(4), 879–975 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abe, T., Esnault, H.: A Lefschetz theorem for overconvergent isocrystals with Frobenius structure. Ann. Sci. Éc. Norm. Supér. 52(4), 1243–1264 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Abe, T., Marmora, A.: Product formula for p-adic epsilon factors. J. Inst. Math. Jussieu 14(2), 275–377 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Adolphson, A., Sperber, S.: Exponential sums and Newton polyhedra: cohomology and estimates. Ann. Math. 130, 367–406 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. André, Y.: Représentations galoisiennes et opérateurs de Bessel \(p\)-adiques. Ann. Inst. Fourier (Grenoble) 52(3), 779–808 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. André, Y.: Filtrations de type Hasse-Arf et monodromie \(p\)-adique. Invent. Math. 148, 285–317 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. André, Y., Baldassarri, F.: De Rham Cohomology of Differential Modules on Algebraic Varieties. Progress in Mathematics 189, Birkhäuser, Basel (2001)

    Book  MATH  Google Scholar 

  13. Baumann, P., Riche, S.: Notes on the geometric Satake equivalence. In: Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms (CIRM Jean-Morlet Chair, Spring 2016), Lecture Notes in Mathematics, vol. 2221, pp. 1–134. Springer, Cham (2018)

  14. Baldassarri, F.: Differential modules and singular points of \(p\)-adic differential equations. Adv. Math. 44(2), 155–179 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baldassarri, F., Berthelot, P.: On Dwork cohomology for singular hypersurfaces. In: Adolphson, A., Baldassarri, F., Berthelot, P., Katz, N., Loeser, F. (eds.) Geometric Aspects of Dwork Theory, vol. I, pp. 177–244. De Gruyter, Berlin (2004)

    Chapter  MATH  Google Scholar 

  16. Beilinson, A., Bernstein, J., Deligne, P., Gabber, O.: Faisceaux pervers. Astérisque 100(1982)

  17. Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s integrable system and Hecke eigensheaves. www.math.uchicago.edu/~mitya/langlands

  18. Berthelot, P.: Cohomologie rigide et théorie de Dwork: le cas des sommes exponentielles, in \(P\)-adic cohomology. Astérisque No. 119–120(3), 17–49 (1984)

  19. Berthelot, P.: Cohomologie rigide et cohomologie ridige à supports propres, première partie. Preprint (1996)

  20. Berthelot, P.: \(\mathscr {D}\)-modules arithmétiques. I. Opérateurs différentiels de niveau fini. Ann. Sci. École Norm. Sup. 29(2), 18–272 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Berthelot, P.: Introduction à la théorie arithmétique des \(\mathscr {D}\)-modules. In: Berthelot, P., Fontaine, J.-M., Illusie, L., Kato, K., Rapoport, M. (eds.) Cohomologies \(p\)-adiques et applications arithmétiques II. Astérique, vol. 279, pp. 1–80 (2002)

  22. Braden, T.: Hyperbolic localization of intersection cohomology. Transf. Groups 8(3), 209–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Braverman, A., Gaitsgory, D.: Geometric Eisenstein series. Invent. Math. 150, 287–384 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Carlitz, L.: A note on exponential sums. Pac. J. Math. 30, 35–37 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  25. Caro, D.: \(\mathscr {D}\)-modules arithmétiques surholonomes. Ann. Sci. Éc. Norm. Supér. 42(1), 141–192 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Caro, D., Tsuzuki, N.: Overholonomicity of overconvergent \(F\)-isocrystals over smooth varieties. Ann. Math. 176(2), 747–813 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cass, R.: Perverse \({\mathbb{F}}_p\) sheaves on the affine Grassmannian. Preprint arXiv:1910.03377 (2019)

  28. Chiarellotto, B., Tsuzuki, N.: Logarithmic growth and Frobenius filtrations for solutions of \(p\)-adic differential equations. J. Inst. Math. Jussieu 8(3), 465–505 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Christol, G., Mebkhout, Z.: Sur le théorème de l’indice des équations différentielles p-adiques III. Ann. Math. 151, 385–457 (2000)

  30. Crew, R.: Specialization of crystalline cohomology. Duke Math. J. 53(3), 749–757 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Crew, R.: \(F\)-isocrystals and their monodromy groups. Ann. Sci. École Norm. Sup. 25(4), 429–464 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. D’Addezio, M.: The monodromy groups of lisse sheaves and overconvergent F-isocrystals. Sel. Math. (N.S.) 26(45), 1–41 (2020)

  33. Deligne, P.: Applications de la formule des traces aux sommes trigonométriques, In: Cohomologie Étale (SGA \(4\frac{1}{2}\)), Lecture Notes in Mathematics, 569 (1977)

  34. Deligne, P.: La conjecture de Weil. II. Publ. Math. Inst. Hautes Études Sci. No. 52, pp. 137–252 (1980)

  35. Deligne, P.: Catégories tannakiennes. In: The Grothendieck Festschrift. Modern Birkhäuser Classics. Birkhäuser, Boston (2007)

  36. Deligne, P., Milne, J.S.: Tannakian Categories, Hodge Cycles, Motives, and Shimura Varieties. Lecture Notes in Mathematics, vol. 900. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  37. Drinfeld, V., Gaitsgory, D.: On a theorem of Braden. Transform. Groups 19(2), 313–358 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Drinfeld, V., Kedlaya, K.: Slopes of indecomposable F-isocrystals. Pure Appl. Math. Q. 13(1), 131–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dwork, B.: \(P\)-adic cycles. Publ. Math. Inst. Hautes Études Sci. No. 37, 27–115 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dwork, B.: Bessel functions as p-adic functions of the argument. Duke Math. J. 41, 711–738 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  41. Étesse, J.-Y., Le Stum, B.: Fonctions L associées aux F-isocristaux surconvergent I. Interprétation cohomologique. Math. Ann. 296, 557–576 (1993)

  42. Frenkel, E., Gross, B.: A rigid irregular connection on the projective line. Ann. Math. 170, 1469–1512 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Fu, L., Wan, D.: L-functions for symmetric products of Kloosterman sums. J. Reine Angew. Math. 589, 79–103 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gaitsgory, D.: Construction of central elements in the affine Hecke algebra via nearby cycles. Invent. Math. 144, 253–280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Görtz, U., Haines, T.J.: The Jordan-Hölder series for nearby cycles on some Shimura varieties and affine flag varieties. J. Reine Angew. Math. 609, 161–213 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Gross, B., Reeder, M.: Arithmetic invariants of discrete Langlands parameters. Duke Math. J. 154, 431–508 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Heinloth, J., Ngô, B.-C., Yun, Z.: Kloosterman sheaves for reductive groups. Ann. Math. 177(1), 241–310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Huyghe, C.: \(\mathscr {D}^{\dagger }(\infty )\)-affinité des schémas projectifs. Ann. Inst. Fourier (Grenoble) 48(4), 913–956 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  49. Katz, N.: On the calculation of some differential Galois groups. Invent. Math. 87, 13–61 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  50. Katz, N., Sums, Gauss: Kloosterman Sums, and Monodromy Groups. Annals in Mathematics Studies 116, Princeton University Press, Princeton, NJ (1988)

    Book  Google Scholar 

  51. Katz, N.: Exponential Sums and Differential Equations. Annals in Mathematics Studies 124, Princeton University Press, Princeton, NJ (1990)

    Book  MATH  Google Scholar 

  52. Katz, N.: From Clausen to Carlitz: low-dimensional spin groups and identities among character sums. Mosc. Math. J. 9(1), 57–89 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kedlaya, K.: Semistable reduction for overconvergent F-isocrystals. I. Unipotence and logarithmic extensions. Compos. Math. 143(5), 1164–1212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kedlaya, K.: p-Adic Differential Equations. Cambridge Studies in Advanced Mathematics, 125, Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  55. Kedlaya, K.: Semistable reduction for overconvergent F-isocrystals, IV: local semistable reduction at nonmonomial valuations. Compos. Math. 147, 467–523 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kedlaya, K.: Notes on isocrystals. Preprint (2016)

  57. Lafforgue, V.: Estimées pour les valuations \(p\)-adiques des valeurs propres des opérateurs de Hecke. Bull. Soc. Math. Fr. 139(4), 455–477 (2011)

    Article  MATH  Google Scholar 

  58. Lam, T., Templier, N.: The mirror conjecture for minuscule flag varieties, preprint, arXiv:1705.00758 (2017)

  59. Liu, R., Zhu, X.: Rigidity and a Riemann–Hilbert correspondence for p-adic local systems. Invent. Math. 207, 291–343 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  60. Matsuda, S.: Katz correspondence for quasi-unipotent overconvergent isocrystals. Compos. Math. 134(1), 1–34 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  61. Miyatani, K.: P-adic generalized hypergeometric functions from the viewpoint of arithmetic D-modules. Am. J. Math. 142(4), 1017–1050 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  62. Mirković, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. 166, 95–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. Ngô, B.C., Polo, P.: Résolutions de Demazure affines et formule de Casselman–Shalika géométrique. J. Algebr. Geom. 10(3), 515–547 (2001)

    MATH  Google Scholar 

  64. Ogus, A.: F-isocrystals and de Rham cohomology. II. Convergent isocrystals. Duke Math. J. 51(4), 765–850 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  65. Ohkubo, S.: Logarithmic growth filtrations for \((\varphi,\nabla )\)-modules over the bounded Robba ring. Compos. Math. 157(6), 1265–1301 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  66. Pech, C., Rietsch, K., Williams, L.: On Landau-Ginzburg models for quadrics and flat sections of Dubrovin connections. Adv. Math. 300, 275–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  67. Richarz, T.: A new approach to the geometric Satake equivalence. Doc. Math. 19, 209–246 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  68. Richarz, T., Scholbach, J.: The motivic Satake equivalence. Math. Ann. 380, 1595–1653 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  69. Richarz, T., Zhu, X.: Appendix to [78]

  70. Shiho, A.: Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology. J. Math. Sci. Univ. Tokyo 9(1), 1–163 (2002)

    MathSciNet  MATH  Google Scholar 

  71. Sperber, S.: \(p\)-adic hypergeometric functions and their cohomology. Duke Math. J. 44(3), 535–589 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  72. Sperber, S.: Congruence properties of the hyper-Kloosterman sum. Compos. Math. 40(1), 3–33 (1980)

    MathSciNet  MATH  Google Scholar 

  73. Tsuzuki, N.: The local index and the Swan conductor. Compos. Math. 111, 245–288 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  74. Tsuzuki, N.: Minimal slope conjecture of \(F\)-isocrystals. Preprint arXiv:1910.03871 (2019)

  75. Fresnel, J., van der Put, M.: Rigid Analytic Geometry and Its Applications. Progress in Mathematics, 218, Birkhäuser Boston, Inc., Boston (2004)

    Book  MATH  Google Scholar 

  76. Wan, D.: Newton polygons of zeta functions and L-functions. Ann. Math. 137, 247–293 (1993)

    Article  MathSciNet  Google Scholar 

  77. Wan, D.: Variation of p-adic Newton polygons for L-functions of exponential sums. Asian J. Math. 8(3), 427–472 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  78. Zhu, X.: The geometric Satake correspondence for ramified groups. Ann. Sci. Éc. Norm. Supér. 48, 409–451 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  79. Zhu, X.: An introduction to affine Grassmannians and the geometric Satake equivalence. IAS/Park City Math. Ser. 24, 59–154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  80. Zhu, X.: Frenkel–Gross’ irregular connection and Heinloth–Ngô–Yun’s are the same. Sel. Math. (N.S.) 23(1), 245–274 (2017)

  81. Zhu, X.: Geometric Satake, categorical traces, and arithmetic of Shimura varieties. Curr. Dev. Math. 2016, 145–206 (2016)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Benedict Gross, Shun Ohkubo, Daqing Wan, Liang Xiao and Zhiwei Yun for valuable discussions. We are also grateful to an anonymous referee for his/her careful reading and valuable comments. X. Z. is partially supported by the National Science Foundation under agreement Nos. DMS-1902239 and a Simons Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwen Zhu.

Appendix A. A 2-adic proof of Carlitz’s identity and its generalization

Appendix A. A 2-adic proof of Carlitz’s identity and its generalization

As mentioned in introduction, Carlitz [24] proved the following identity between Kloosterman sums:

$$\begin{aligned} {{\,\mathrm{Kl}\,}}(3;a)={{\,\mathrm{Kl}\,}}(2;a)^2-1,\qquad \forall ~ a\in {\mathbb {F}}_{2^s}^{\times }. \end{aligned}$$

In this appendix, we reprove and generalize this identity by establishing an isomorphism between two Bessel F-isocrystals \({{\,\mathrm{Be}\,}}_{2n+1}^{\dagger }\) and \({{\,\mathrm{Be}\,}}_{{{\,\mathrm{SO}\,}}_{2n+1},{{\,\mathrm{Std}\,}}}^{\dagger }\). The following is a restatement of Proposition 5.2.10(ii).

Proposition A1

There exists an isomorphism between following two overcovergent F-isocrystals on \({\mathbb {G}}_{m,{\mathbb {F}}_2}\):

Our strategy is first to show that their maximal slope quotient convergent F-isocrystals are isomorphic. Then we conclude the proposition by a dual version of a minimal slope conjecture (proposed by Kedlaya [56] and recently proved by Tsuzuki [74]) that we briefly recall in the following.

Let X be a smooth k-scheme and \(\mathscr {M}^{\dagger }\) an overconvergent F-isocrystal on X/K. We denote the associated convergent F-isocrystal on X/K by \(\mathscr {M}\). When the (Frobenius) Newton polygons of \(\mathscr {M}\) are constant on X, \(\mathscr {M}\) admits a (dual) slope filtration, that is a decreasing filtration

of convergent F-isocrystals on X/K such that

  • \(\mathscr {M}^{i}/\mathscr {M}^{i+1}\) is isoclinic of slope \(s^i\) and

  • \(s^0>s^1>\cdots >s^{r-1}\).

Theorem A2

(Tsuzuki, [74] theorem 1.3) Let X be a smooth connected curve over k. Let \(\mathscr {M}^{\dagger },\mathscr {N}^{\dagger }\) be two irreducible overconvergent F-isocrystals such that the corresponding convergent F-isocrystals \(\mathscr {M},\mathscr {N}\) admit the slope filtrations \(\{\mathscr {M}^i\}\), \(\{\mathscr {N}^i\}\) respectively. Suppose there exists an isomorphism \(h:\mathscr {N}/\mathscr {N}^1\xrightarrow {\sim } \mathscr {M}/\mathscr {M}^1\) of convergent F-isocrystals between the maximal slope quotients. Then there exists a unique isomorphism \(g^{\dagger }:\mathscr {N}^{\dagger }\xrightarrow {\sim } \mathscr {M}^{\dagger }\) of overconvergent F-isocrystals, which is compatible with h as morphisms of convergent F-isocrystals.

A3 Following Dwork’s strategy [39, § 1-3], we study the maximal slope quotients of \({{\,\mathrm{Be}\,}}_{2n+1}^{\dagger }\) and of \({{\,\mathrm{Be}\,}}_{{{\,\mathrm{SO}\,}}_{2n+1},{{\,\mathrm{Std}\,}}}^{\dagger }\) in terms of their unique solutions at 0.

In the following, we assume \(k={\mathbb {F}}_p\). We first recall Dwork’s congruences and show a refinement of his result in the 2-adic case. Consider for every \(i\ge 0\), a map \(B^{(i)}(-):{\mathbb {Z}}_{\ge 0}\rightarrow K^{\times }\) and the following congruence relation for \(0\le a<p\) and \(n,m,s \in {\mathbb {Z}}_{\ge 0}\):

  1. (a)

    \(B^{(i)}(0)\) is a p-adic unit for all \(i\ge 0\),

  2. (b)

    \( \displaystyle \frac{B^{(i)}(a+np)}{B^{(i+1)}(n)} \in R\) for all \(i\ge 0\),

  3. (c)

    \( \displaystyle \frac{B^{(i)}(a+np+mp^{s+1})}{B^{(i+1)}(n+mp^{s})} \equiv \frac{B^{(i)}(a+np)}{B^{(i+1)}(n)} \mod p^{s+1}\) for all \(i\ge 0\).

  4. (c’)

    When \(p=2\), \( \displaystyle \frac{B^{(i)}(a+n2+m2^{s+1})}{B^{(i+1)}(n+m2^{s})} \equiv u(i,s,m) \frac{B^{(i)}(a+n2)}{B^{(i+1)}(n)} \mod 2^{s+1}\) for all \(i\ge 0\), where \(u(i,s,m)=1\) if \(s\ne 1\) and \(u(i,1,m)=1\) or \(-1\) depending on i and m.

If conditions (a–c) (or (a,b,c’)) are satisfied, then \(B^{(i)}(n)\in R\) for all \(i,n\ge 0\). We set

$$\begin{aligned}&F^{(i)}(x)=\sum _{j=0}^{\infty } B^{(i)}(j) x^j ~ \in K \llbracket x \rrbracket , \\&F^{(i)}_{m,s}(x)=\sum _{j=mp^s}^{(m+1)p^{s}-1} B^{(i)}(j) x^j~ \in K[x],\quad s\ge 0. \end{aligned}$$

We write \(F^{(i)}_{0,s}\) by \(F^{(i)}_{s}\) for simplicity.

Theorem A4

(i) [39, theorem 2] If conditions (a–c) are satisfied, then

(i\(^{\prime }\)) If conditions (a,b,c\(^{\prime }\)) are satisfied (in particular \(p=2\)), then

(ii) [39, theorem 3] Under the assumption of (i) or (i’) and suppose moreover that

  1. (d)

    \(B^{(i)}(0)=1\) for \(i\ge 0\).

  2. (e)

    \(B^{(i+r)}=B^{(i)}\) for all \(i\ge 0\) and some fixed \(r\ge 1\).

Let U be the open subscheme of \({\mathbb {A}}^1_{k}\) defined by \(F_{1}^{(i)}(x)\ne 0\), for \(i=0,1,\ldots ,r-1\). Then the limit

defines a global function on the formal open subscheme \(\mathfrak {U}\) of \(\widehat{{\mathbb {A}}}^{1}_R\) associated to U, which takes p-adic unit value at each rigid point of \(\mathfrak {U}^{{{\,\mathrm{rig}\,}}}\).

We prove assertion (i’) in the end (A11). We briefly explain Dwork’s result (ii) in the language of formal schemes. The assumption implies that \(F_s^{(i)}\ne 0\) on U (cf. [39] 3.4). For \(s\ge 1\), the congruences (A41) or ((A42)) imply that

$$\begin{aligned} F_{s+1}^{(0)}(x)/ F_s^{(1)}(x^p)= F_s^{(0)}(x)/F_{s-1}^{(1)}(x^p) \quad \in \Gamma (\mathfrak {U},\mathscr {O}_{\mathfrak {U}}/p^{s-1}\mathscr {O}_{\mathfrak {U}}). \end{aligned}$$

This allows us to use (A43) to define a global function f of \(\mathscr {O}_{\mathfrak {U}}\).

A5 Let \(F(x)=\sum _{j\ge 0} B(j) x^{j}\) be a formal power series in \(R\llbracket x \rrbracket \). We say F satisfies Dwork’s congruences if by setting \(B^{(i)}(j)=B(j)\) for every \(i\ge 0\), conditions of Theorem A4(ii) are satisfied.

We take such a function F and then we obtain a function \(f\in \Gamma (\mathfrak {U},\mathscr {O}_{\mathfrak {U}})\) coinciding with \(F(x)/F(x^p)\) in \(K\{x\}\) (2.3.1.1) (i.e. the open unit disc). Moreover, by [39, lemma 3.4(ii)], there exists a function \(\eta \in \Gamma (\mathfrak {U},\mathscr {O}_{\mathfrak {U}})\) coinciding with \(F'(x)/F(x)\) in \(K\{x\}\) defined by

$$\begin{aligned} \eta (x)\equiv F'_{s+1}(x)/F_{s+1}(x) \mod p^{s}. \end{aligned}$$

The functions f(x) and \(\eta (x)\) satisfy a differential equation:

$$\begin{aligned} \frac{f'(x)}{f(x)}+px^{p-1}\eta (x^{p})=\eta (x). \end{aligned}$$

Note that \(f(0)=F(0)/F(0)=1\). Then we deduce that the following corollary.

Corollary A6

The connection \(d- \eta \) on the trivial bundle \(\mathscr {O}_{\mathfrak {U}^{{{\,\mathrm{rig}\,}}}}\) and the function f form a unit-root convergent F-isocrystal \(\mathscr {E}_F\) on U/K, whose Frobenius eigenvalue at 0 is 1.

A7. Let \(\mathscr {M}^{\dagger }\) be an overconvergent F-isocrystal on \({\mathbb {G}}_{m,k}\) over K of rank r whose underlying bundle is trivial and the connection is defined by a differential equation:

$$\begin{aligned} P(\delta )=\delta ^r+p_{r}\delta ^{r-1}+\cdots + p_{1}=0, \end{aligned}$$

where \(\delta =x\frac{d}{dx}\), \(p_i\in \Gamma (\widehat{{\mathbb {A}}}_R^1,\mathscr {O}_{\widehat{{\mathbb {A}}}_R^1})[\frac{1}{p}]\). We assume moreover that \(\mathscr {M}^{\dagger }\) is unipotent at 0 with a maximal unipotent local monodromy. Then \(\mathscr {M}^{\dagger }\) extends to a log convergent F-isocrystal \(\mathscr {M}^{\log }\) on \(({\mathbb {A}}^1,0)\) and its Frobenius slopes at 0 are

$$\begin{aligned} s^0>s^1=s^0-1>\cdots > s^{r-1}=s^0-(r-1). \end{aligned}$$

Note that \(\mathscr {M}^{\dagger }\) is indecomposable in \(F\text {-}{{\,\mathrm{Isoc}\,}}^{\dagger }({\mathbb {G}}_{m,k}/K)\) and so is \(\mathscr {M}\) in \(F\text {-}{{\,\mathrm{Isoc}\,}}({\mathbb {G}}_{m,k}/K)\). Then by Drinfeld–Kedlaya’s theorem on the generic Frobenius slopes [38], we deduce property (i):

(i) The generic Frobenius slopes (mult-)set is \(\{s^0,\ldots ,s^{r-1}\}\) with \(s^i=s^0-(i-1)\).

(ii) In view of (2.3.1.2), the differential equation \(D=0\) admits a unique solution at 0:

$$\begin{aligned} F(x)=\sum _{n\ge 0} A(n) x^n \quad \in K\{x\},\quad \text { with A(0)=1}. \end{aligned}$$

Proposition A8

Suppose the function F(x) satisfies Dwork’s congruences (A5) and let \(\mathscr {E}_F\) be the associated unit-root convergent F-isocrystal on \(U \subset {\mathbb {A}}^1_k\). Then

(i) There exists an epimorphism of log convergent isocrystals \(\mathscr {M}^{\log }\rightarrow \mathscr {E}_F\) on (U, 0).

(ii) As convergent isocrystals, \(\mathscr {E}_F\) coincides with the maximal slope quotient \(\mathscr {M}^{\log }/\mathscr {M}^{\log ,1}\) of \(\mathscr {M}^{\log }\) (A12).

Proof

(i) We set \(A=\Gamma (\mathfrak {U},\mathscr {O}_{\mathfrak {U}})[\frac{1}{p}]\). We claim that there exists a decomposition of differential operators:

Indeed, by the Euclidean algorithm [54, 5.5.2], there exists \(r\in A\) such that \(P=Q(\delta -x\eta )+r\). By evaluating the above identity at F (in the ring \(K\{x\}\) containing A), we obtain

$$\begin{aligned} P(\delta )(F)=0=Q(\delta )(\delta -x\eta )(F)+rF=rF. \end{aligned}$$

Then we deduce \(r=0\) and (A81) follows.

Let \(e_1,\ldots ,e_r\) be a basis of \(\mathscr {M}\) such that \(\nabla _{\delta }(e_i)=e_{i+1}, 1\le i\le r-1\) and \(\nabla _{\delta }(e_r)=-(p_r e_r+\cdots +p_1 e_1)\). We consider a free \(\mathscr {O}_{\mathfrak {U}^{{{\,\mathrm{rig}\,}}}}\)-module with a log connection \(\mathscr {N}\) with a basis \(f_1,\ldots ,f_{r-1}\) and the connection defined by \(\nabla _{\delta }(f_i)=f_{i+1}\), \(\nabla _{\delta }(f_{r-1})=-(q_{r-1} f_{r-1}+\cdots +q_{1}f_{1})\). By (A81), the morphism \(f_1\mapsto e_2- x\eta e_1\) induces a horizontal monomorphism \(\mathscr {N}\rightarrow \mathscr {M}^{\log }\) whose cokernel is isomorphic to \(\mathscr {E}_F\).

(ii) Note that \({{\,\mathrm{Pic}\,}}(\mathfrak {U}^{{{\,\mathrm{rig}\,}}})\simeq {{\,\mathrm{Pic}\,}}(U)\) [75, 3.7.4] is trivial. Then the rank one convergent isocrystal \(\mathscr {M}^{\log }/\mathscr {M}^{\log ,1}\) can be represented as a connection \(d-\lambda \) on the trivial bundle \(\mathscr {O}_{\mathfrak {U}^{{{\,\mathrm{rig}\,}}}}\).

Since \(\mathscr {M}^{\log }\) has a maximal unipotent at 0, the rank one quotient of the restriction \(\mathscr {M}^{\log }|_0\) of \(\mathscr {M}^{\log }\) at the open unit disc around 0 is unique (2.3.1). In particular, \(d-\lambda \) kills the unique solution F of \(P(\delta )=0\). By analytic continuation, we have \(\lambda =\eta \) and the assertion follows. \(\square \)

Remark A9

The unique solution F(x) belongs to the ring \(K\llbracket x \rrbracket _0 = R \llbracket x \rrbracket \otimes _R K\) of bounded functions on open unit disc, which is a subring of \(K\{x\}\). Assertion (ii) can be viewed as an example of Dwork–Chiarellotto–Tsuzuki conjecture on the comparison between the log-growth filtration (of solutions) and Frobenius slope filtration [28]. This conjecture was recently proved by Ohkubo [65].

Proof of Proposition A1

We set \(k={\mathbb {F}}_2\) and apply the above discussions to overconvergent F-isocrystals \(\mathscr {M}^{\dagger }={{\,\mathrm{Be}\,}}_{2n+1}^{\dagger }\) and \(\mathscr {N}^{\dagger }={{\,\mathrm{Be}\,}}_{{{\,\mathrm{SO}\,}}_{2n+1},{{\,\mathrm{Std}\,}}}^{\dagger }\) on \({\mathbb {G}}_{m,{\mathbb {F}}_2}/K\) (A11). Their unique solutions at 0 are:

$$\begin{aligned} F(x)= \sum _{r\ge 0} \frac{(-2)^{(2n+1)r}}{(r!)^{2n+1}} x^r,\qquad G(x)=\sum _{r\ge 0} \frac{2^{(2n+1)r}(2r-1)!!}{(r!)^{2n+1}} x^r. \end{aligned}$$

In the following lemma, we show that F and G satisfy Dwork’s congruences and that the associated maximal slope quotients \(\mathscr {E}_F\) and \(\mathscr {E}_G\) (A8) are isomorphic. Then Proposition A1 follows from theorem A2 and the following lemma. \(\square \)

Lemma A10

(i) The functions F(x) and G(x) satisfy Dwork’s congruences (A5) and define unit-root convergent F-isocrystals \(\mathscr {E}_F\) and \(\mathscr {E}_G\) on \({\mathbb {A}}_k^1\) respectively.

(ii) The function F(x)/G(x) extends to a global function of \(\widehat{{\mathbb {A}}}^1_R\) and induces an isomorphism \(\mathscr {E}_G\xrightarrow {\sim } \mathscr {E}_F\).

Proof

(i) Conditions (a,b,d,e) are easy to verified. The coefficients of F(x) (resp. G(x)) satisfy condition (c’) (resp. (c)), that is

$$\begin{aligned}&\frac{(-2)^{(2n+1)(a+\ell 2+m2^{s+1})}/((a+\ell 2+m2^{s+1})!)^{2n+1}}{(-2)^{(2n+1)(\ell +m2^{s})}/((\ell +m2^{s})!)^{2n+1}} \\&\quad \equiv u(s,m) \frac{ (-2)^{(2n+1)(a+\ell 2)}/ ((a+\ell 2)!)^{2n+1}}{(-2)^{(2n+1)\ell }/ (\ell !)^{2n+1}} \mod 2^{s+1}, \end{aligned}$$

where \(u(1,m)=(-1)^m\) and \(u(s,m)=1\) if \(s\ne 1\), and

$$\begin{aligned}&\frac{(2(a+\ell 2+m2^{s+1})-1)!! 2^{(2n+1)(a+\ell 2+m2^{s+1})}/((a+\ell 2+m2^{s+1})!)^{2n+1}}{(2(\ell +m2^{s})-1)!!2^{(2n+1)(\ell +m2^{s})}/((\ell +m2^{s})!)^{2n+1}} \\&\quad \equiv \frac{(2(a+\ell 2)-1)!!2^{(2n+1)(a+\ell 2)}/ ((a+\ell 2)!)^{2n+1}}{(2\ell -1)!!2^{(2n+1)\ell }/ (\ell !)^{2n+1}} \mod 2^{s+1}. \end{aligned}$$

Since \(F_1(x)\equiv G_1(x)\equiv 1\mod 2\), the F-isocrystals \(\mathscr {E}_{F},\mathscr {E}_G\) are defined over \({\mathbb {A}}_k^1\).

(ii) We set \(B^{(0)}(r)=\frac{(-2)^{(2n+1)r}}{(r!)^{2n+1}}\) and \(B^{(1)}(r)=\frac{2^{(2n+1)r}(2r-1)!!}{(r!)^{2n+1}}\) and \(B^{(i+2)}=B^{(i)}\). Then these sequences satisfy conditions (a,b,c’,d,e). For condition (c’), the constants u(i, 1, m) are given by

$$\begin{aligned} u(0,1,m)=1, \quad u(1,1,m)=(-1)^m,\quad u(i+2,1,m)=u(i,1,m). \end{aligned}$$

Since \(F_1(x)\equiv G_1(x)\equiv 1\mod 2\), \(F(x)/G(x^2)\) extends to a global function of \(\mathscr {O}_{\widehat{{\mathbb {A}}}_R^1}\) by Theorem A4 and so is F(x)/G(x). Then the assertion follows. \(\square \)

A11 Proof of Theorem A4(i’). We prove assertion (i’) by modifying the argument of [39, theorem 2]. Note that condition (c’) implies the following congruence relation:

When \(n<0\), we set \(B^{(i)}(n)=0\). We set \(A=B^{(0)}\), \(B=B^{(1)}\) and for \(a\in \{0,1\}\), \(j,N\in {\mathbb {Z}}\), we set

$$\begin{aligned}&U_{a}(j, N) =A(a+2(N-j)) B(j)-B(N-j) A(a+2j), \\&H_{a}(m, s, N) = \sum _{j=m2^s}^{(m+1)2^s-1} U_{a}(j, N). \end{aligned}$$

Then the assertion is equivalent to

By condition (b), we have \(A(a+2m)/B(m)\in R\) and hence

$$\begin{aligned} U_a(m,N) \equiv 0 \mod B(m). \end{aligned}$$

Then equation (A112) for \(s=0\) follows from the fact that \(H_a(m,0,N)=U_a(m,N)\).

We now prove by induction on s. We write the induction hypothesis

$$\begin{aligned} \alpha _s: H_a(m,u,N)\equiv 0 \mod 2^u B^{(u+1)}(m),\quad \text {for } u\in [0,s), m,N\ge 0. \end{aligned}$$

We may assume \(\alpha _{s}\) for fixed \(s\ge 1\). The main step is to show for \(0\le t\le s\) that

$$\begin{aligned}&\beta _{t,s}: v(s,t,m) H_a(m,s,N+m2^s)\\&\quad \equiv \sum _{j=0}^{2^{s-t}-1} B^{(t+1)}(j+m2^{s-t})H_a(j,t,N)/B^{(t+1)}(j)\mod 2^s B^{(s+1)}(m), \end{aligned}$$

where \(v(s,t,m)=1\) or \(-1\) depending on stm.

We list some elementary facts (cf. [39, 2.5–2.7])

We first prove \(\beta _{0,s}\). We have

By (A111), we have

$$\begin{aligned} A\left( a+2 j+m 2^{s+1}\right) = A(a+2j)B(j+m2^s)/B(j)+X_j 2^s B(j+m 2^s), \end{aligned}$$

where \(X_j\in R\). Then the right hand side of (A116) is

$$\begin{aligned} B\left( j+m 2^{s}\right) \biggl (U_{a}(j, N) / B(j)-2^{s} X_{j} B(N-j)\biggr ). \end{aligned}$$

Since \(U_{a}(j,N)=H_a(j,0,N)\), we obtain

$$\begin{aligned} H_{a}\left( m, s, N+m 2^{s}\right)= & {} \sum _{j=0}^{2^{s}-1} B\left( j+m 2^{s}\right) H_{a}(j, 0, N) / B(j)\\&-2^{s} \sum _{j=0}^{2^{s}-1} X_{j} B\left( j+m 2^{s}\right) B(N-j). \end{aligned}$$

Since \(X_jB(N-j)\in R\), it follows from (A115) (\(B=B^{(1)}\)) that the second sum is congruent to zero modulo \(2^s B^{(s+1)}(m)\). This proves \(\beta _{0,s}\) with \(v(s,0,m)=1\).

With s fixed, \(s\ge 1\), t fixed, \(0\le t \le s-1\), we show that \(\beta _{t,s}\) together with \(\alpha _s\) imply \(\beta _{t+1,s}\). To do this we put \(j=\mu +2i\) in the right side of \(\beta _{t,s}\) and write it in the form

$$\begin{aligned} \sum _{\mu =0}^{1} \sum _{i=0}^{2^{s-t-1}} B^{(t+1)}\left( \mu + 2i+m 2^{s-i}\right) H_{a}(\mu +2 i, t, N) / B^{(t+1)}(\mu +2i). \end{aligned}$$

By condition (c’), we have,

$$\begin{aligned}&B^{(t+1)}\left( \mu +2i+m2^{s-t}\right) \\&\quad = u(t+1,s-t-1,m)\left( B^{(t+1)}(\mu +2 i) B^{(t+2)}\left( i+m2^{s-t-1}\right) / B^{(t+2)}(i)\right) \\&\qquad +X_{i, \mu } 2^{s-t} B^{(t+2)}\left( i+m 2^{s-t-1}\right) , \end{aligned}$$

where \(X_{i,\mu }\in R\). Thus the general term in the above double sum is

$$\begin{aligned} u(t+1,s-t-1,m)\biggl (B^{(t+2)}(i+m2^{s-t-1})H_a(\mu +2i,t,N)/B^{(t+2)}(i)\biggr )+Y_{i,\mu }, \end{aligned}$$

where the error term:

$$\begin{aligned} Y_{i, \mu }=X_{i, \mu } 2^{s-t} B^{(t+2)}\left( i+m 2^{s-t-1}\right) H_{a}(\mu +2 i, t, N) / B^{(t+1)}(\mu +2i). \end{aligned}$$

For this error term, since \(t<s\), we can apply \(\alpha _s\) to conclude that

$$\begin{aligned} Y_{i,\mu }\equiv 0 \mod B^{(t+2)}(i+m2^{s-t-1})2^s. \end{aligned}$$

Then we can use (A115) to conclude that

$$\begin{aligned} Y_{i,\mu }\equiv 0 \mod 2^s B^{(s+1)}(m). \end{aligned}$$

After modulo \(2^s B^{(s+1)}(m)\), the right side of \(\beta _{t,s}\) is equal to

$$\begin{aligned}&u(t+1,s-t-1,m)\sum _{\mu =0}^{1} \sum _{i=0}^{2^{s-t-1}-1} B^{(t+2)}\left( i+m2^{s-t-1}\right) \\&\quad \times H_{a}(\mu +2 i, t, N) / B^{(t+2)}(i).\end{aligned}$$

By reversing the order of summation and using (A114), the above sum is the same as

$$\begin{aligned}&u(t+1,s-t-1,m)\sum _{i=0}^{2^{s-t-1}-1} B^{(t+2)}\left( i+m2^{s-t-1}\right) \\&\quad \times H_{a}(i, t+1, N) / B^{(t+2)}(i),\end{aligned}$$

which proves \(\beta _{t+1,s}\). In particular, we obtain \(\beta _{s,s}\), which states

We now consider the statement (with s fixed before)

$$\begin{aligned} \gamma _{N}:H_a(0,s,N)\equiv 0 \mod 2^s. \end{aligned}$$

We know that \(\gamma _N\) is true for \(N<0\). Let \(N'\) (if it exists) be the minimal value of N for which \(\gamma _{N'}\) fails. For \(m\ge 1\), since \(B^{(s+1)}(0)\) is a unit, we have by (A117)

$$\begin{aligned} H_a(m,s,N')\equiv & {} v(s,s,m) B^{(s+1)}(m)H_a(0,s,N'-m2^s)/B^{(s+1)}(0)\\\equiv & {} 0 \mod 2^s. \end{aligned}$$

Applying this to (A113), we obtain that

$$\begin{aligned} H_a(0,s,N')\equiv 0 \mod 2^s. \end{aligned}$$

Thus \(\gamma _N\) is valid for all N and Eq. (A117) implies \(\alpha _{s+1}\). This proves assertion (i\(^{\prime }\)). \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Zhu, X. Bessel F-isocrystals for reductive groups. Invent. math. 227, 997–1092 (2022). https://doi.org/10.1007/s00222-021-01079-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-021-01079-5