Skip to main content
Log in

Purely magnetic tunneling effect in two dimensions

  • Published:
Inventiones mathematicae Aims and scope

Abstract

The magnetic Schrödinger operator, with Neumann boundary condition, on a smooth, bounded, and simply connected domain \(\Omega \) of the Euclidean plane is considered in the semiclassical limit. When \(\Omega \) has a symmetry axis, the semiclassical splitting of the first two eigenvalues is analyzed. The first explicit tunneling formula in a pure magnetic field is established. The analysis is based on a pseudo-differential reduction to the boundary and the proof of the first known optimal purely magnetic Agmon estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. and actually of the conjugated operator \({\mathscr {N}}^{\varphi }_{\hbar , r}= e^{\varphi /\hbar ^{\frac{1}{2}}}{\mathscr {N}}_{\hbar , r}e^{-\varphi /\hbar ^{\frac{1}{2}}}\), where \(\varphi \) is an appropriate subsolution of the effective eikonal equation.

References

  1. Bonnaillie-Noël, V., Dauge, M., Martin, D., Vial, G.: Computations of the first eigenpairs for the Schrödinger operator with magnetic field. Comput. Methods Appl. Mech. Eng. 196(37–40), 3841–3858 (2007)

    Article  Google Scholar 

  2. Bonnaillie-Noël, V., Hérau, F., Raymond, N.: Curvature induced magnetic bound states: towards the magnetic tunneling effect. J. E. D. P, (III) (2016)

  3. Bonnaillie-Noël, V., Hérau, F., Raymond, N.: Magnetic WKB constructions. Arch. Ration. Mech. Anal. 221(2), 817–891 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bonnaillie-Noël, V., Hérau, F., Raymond, N.: Semiclassical tunneling and magnetic flux effects on the circle. J. Spectr. Theory 7(3), 771–796 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bony, J.-M.: Sur l’inégalité de Fefferman-Phong. In: Seminaire: Équations aux Dérivées Partielles, 1998–1999, Sémin. Équ. Dériv. Partielles, pages Exp. No. III, 16. École Polytech., Palaiseau (1999)

  6. Dauge, M., Helffer, B.: Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators. J. Differ. Equ. 104(2), 243–262 (1993)

    Article  MathSciNet  Google Scholar 

  7. Fournais, S., Helffer, B.: Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian. Ann. Inst. Fourier (Grenoble) 56(1), 1–67 (2006)

    Article  MathSciNet  Google Scholar 

  8. Fournais, S., Helffer, B.: Spectral Methods in Surface Superconductivity, Volume 77 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Boston, Inc., Boston (2010)

    MATH  Google Scholar 

  9. Gérard, C., Martinez, A., Sjöstrand, J.: A mathematical approach to the effective Hamiltonian in perturbed periodic problems. Commun. Math. Phys. 142(2), 217–244 (1991)

    Article  MathSciNet  Google Scholar 

  10. Harrell, E.M.: Double wells. Commun. Math. Phys. 75(3), 239–261 (1980)

    Article  MathSciNet  Google Scholar 

  11. Helffer, B., Kachmar, A., Raymond, N.: Tunneling for the Robin Laplacian in smooth planar domains. Commun. Contemp. Math. 19(1), 1650030, 38 (2017)

  12. Helffer, B., Morame, A.: Magnetic bottles in connection with superconductivity. J. Funct. Anal. 185(2), 604–680 (2001)

    Article  MathSciNet  Google Scholar 

  13. Helffer, B., Sjöstrand, J.: Multiple wells in the semiclassical limit. I. Commun. Partial Differ. Equ. 9(4), 337–408 (1984)

    Article  MathSciNet  Google Scholar 

  14. Helffer, B., Sjöstrand, J.: Multiple wells in the semiclassical limit. III. Interaction through nonresonant wells. Math. Nachr. 124, 263–313 (1985)

    Article  MathSciNet  Google Scholar 

  15. Helffer, B., Sjöstrand, J.: Puits multiples en limite semi-classique. II. Interaction moléculaire. Symétries. Perturbation. Ann. Inst. H. Poincaré Phys. Théor. 42(2), 127–212 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Helffer, B., Sjöstrand, J.: Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten. Commun. Partial Differ. Equ. 10(3), 245–340 (1985)

    Article  Google Scholar 

  17. Helffer, B., Sjöstrand, J.: Puits multiples en mécanique semi-classique. V. Étude des minipuits. In: Current Topics in Partial Differential Equations, pp. 133–186. Kinokuniya, Tokyo (1986)

  18. Helffer, B., Sjöstrand, J.: Effet tunnel pour l’équation de Schrödinger avec champ magnétique. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14(4), 625–657 (1988), 1987

  19. Helffer, B., Sjöstrand, J.: Puits multiples en mécanique semi-classique. VI. Cas des puits sous-variétés. Ann. Inst. H. Poincaré Phys. Théor. 46(4), 353–372 (1987)

    MathSciNet  MATH  Google Scholar 

  20. Kachmar, A., Raymond, N.: Tunnel effect in a shrinking shell enlacing a magnetic field. Rev. Mat. Iberoam. 35(7), 2053–2070 (2019)

    Article  MathSciNet  Google Scholar 

  21. Keraval, P.: Formules de Weyl par réduction de dimension. Applications à des Laplaciens électro-magnétiques. Ph.D. thesis, Université de Rennes 1 (2018)

  22. Martinez, A.: Développements asymptotiques et effet tunnel dans l’approximation de Born-Oppenheimer. Ann. Inst. H. Poincaré Phys. Théor. 50(3), 239–257 (1989)

  23. Martinez, A.: A general effective Hamiltonian method. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 18(3), 269–277 (2007)

    Article  MathSciNet  Google Scholar 

  24. Outassourt, A.: Comportement semi-classique pour l’opérateur de Schrödinger à potentiel périodique. J. Funct. Anal. 72(1), 65–93 (1987)

  25. Raymond, N.: Bound States of the Magnetic Schrödinger Operator, Volume 27 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2017)

    Book  Google Scholar 

  26. Robert, D.: Analyse semi-classique de l’effet tunnel. Astérisque 5(145–146), 257–281 (1987). Séminaire Bourbaki, vol. 1985/86

  27. Simon, B.: Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions. Ann. Inst. H. Poincaré Sect. A (N.S.) 38(3), 295–308 (1983)

    MathSciNet  MATH  Google Scholar 

  28. Simon, B.: Semiclassical analysis of low lying eigenvalues. II. Tunneling. Ann. Math. (2) 120(1), 89–118 (1984)

    Article  MathSciNet  Google Scholar 

  29. Simon, B.: Semiclassical analysis of low lying eigenvalues. III. Width of the ground state band in strongly coupled solids. Ann. Phys. 158(2), 415–420 (1984)

    Article  MathSciNet  Google Scholar 

  30. Simon, B.: Semiclassical analysis of low lying eigenvalues. IV. The flea on the elephant. J. Funct. Anal. 63(1), 123–136 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Raymond.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

N. R. and F. H. are deeply grateful to the Mittag-Leffler Institute where part of the ideas of this article were discussed. N. R. also thanks Bernard Helffer, Pierig Keraval and Johannes Sjöstrand for many stimulating discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnaillie-Noël, V., Hérau, F. & Raymond, N. Purely magnetic tunneling effect in two dimensions. Invent. math. 227, 745–793 (2022). https://doi.org/10.1007/s00222-021-01073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-021-01073-x

Navigation