Skip to main content
Log in

A topological proof of the Shapiro–Shapiro conjecture

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove a generalization of the Shapiro–Shapiro conjecture on Wronskians of polynomials, allowing the Wronskian to have complex conjugate roots. We decompose the real Schubert cell according to the number of real roots of the Wronski map, and define an orientation of each connected component. For each part of this decomposition, we prove that the topological degree of the restricted Wronski map is given as an evaluation of a symmetric group character. In the case where all roots are real, this implies that the restricted Wronski map is a topologically trivial covering map; in particular, this gives a new proof of the Shapiro–Shapiro conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Billey, S., Vakil, R.: Intersections of Schubert varieties and other permutation array schemes. In: Dickenstein, A., Schreyer, F.-O., Sommese, A.J. (eds.) Algorithms in Algebraic Geometry, vol. 146, pp. 21–54. Springer, New York (2008)

    Chapter  Google Scholar 

  2. Chan, M., López Martın, A., Pflueger, N., Teixidor Bigas, M.: Genera of Brill–Noether curves and staircase paths in Young tableaux. Trans. Am. Math. Soc. 370, 3405–3439 (2018)

    Article  MathSciNet  Google Scholar 

  3. Devadoss, S.: Combinatorial equivalence of real moduli spaces. Notices Am. Math. Soc. 51(6), 620–628 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Eremenko, A., Gabrielov, A.: Degrees of real Wronski maps. Discrete Comput. Geom. 28, 331–347 (2002)

    Article  MathSciNet  Google Scholar 

  5. Eremenko, A., Gabrielov, A.: Counterexamples to pole placement by static output feedback. Linear Algebra Appl. 351(352), 211–218 (2002)

    Article  MathSciNet  Google Scholar 

  6. Eisenbud, D., Harris, J.: Divisors on general curves and cuspidal rational curves. Invent. Math. 74, 371–418 (1983)

    Article  MathSciNet  Google Scholar 

  7. Frame, J.M., Robinson, G.B., Thrall, R.M.: The hook graphs of the symmetric group. Can. J. Math. 6, 316–325 (1954)

    Article  MathSciNet  Google Scholar 

  8. Garsia, A., Wachs, M.: Combinatorial aspects of skew representations of the symmetric group. J. Combin. Theory Ser. A 50(1), 47–81 (1989)

    Article  MathSciNet  Google Scholar 

  9. Gillespie, M., Levinson, J.: K-theory and monodromy of Schubert curves via generalized jeu de taquin. J. Algebr. Comb. 45(1), 191–243 (2017)

    Article  Google Scholar 

  10. Halacheva, I., Kamnitzer, J., Rybnikov, L., Weekes, A.: Crystals and monodromy of Bethe vectors (preprint) (2017). arXiv:1708.05105

  11. Hauenstein, J., Hein, N., Martín del Campo, A., Sottile, F.: Beyond the Shapiro Conjecture and Eremenko–Gabrielov Lower Bounds (2010). www.math.tamu.edu/$\sim $frank.sottile/research/pages/lower\_Shapiro/

  12. Hein, N., Hillar, C., Sottile, F.: Lower bounds in real Schubert calculus. São Paulo J. Math. Sci. 7(1), 33–58 (2013)

    Article  MathSciNet  Google Scholar 

  13. Kleiman, S.L.: The transversality of a general translate. Compos. Math. 28, 287–297 (1974)

    MathSciNet  MATH  Google Scholar 

  14. Kharlamov, V., Sottile, F.: Maximally inflected real rational curves. Mosc. Math. J. 3(3), 947–987 (2003)

    Article  MathSciNet  Google Scholar 

  15. Levinson, J.: One-dimensional Schubert problems with respect to osculating flags. Can. J. Math. 69, 143–177 (2016)

    Article  MathSciNet  Google Scholar 

  16. Levinson, J., Purbhoo, K.: Class groups of open Richardson varieties in the Grassmannian are trivial. J. Commut. Algebra

  17. Leykin, A., Sottile, F.: Galois groups of Schubert problems via homotopy continuation. Math. Comput. 28(267), 1749–1765 (2009)

    Article  Google Scholar 

  18. Lu, K., Mukhin, E., Varchenko, A.: Self-dual Grassmannian, Wronski map, and representations of $\mathfrak{gl}_N$, $\mathfrak{sp}_{2r}$, $\mathfrak{so}_{2r+1}$. Pure Appl. Math. Q. 13(2), 291–335 (2017)

    Article  MathSciNet  Google Scholar 

  19. Mukhin, E., Tarasov, V.: Lower bounds for numbers of real solutions in problems of Schubert calculus. Acta Math. 217(1), 177–193 (2016)

    Article  MathSciNet  Google Scholar 

  20. Mukhin, E., Tarasov, V., Varchenko, A.: The B and M Shapiro conjecture in real algebraic geometry and the Bethe Ansatz. Ann. Math. 170(2), 863–881 (2009)

    Article  MathSciNet  Google Scholar 

  21. Mukhin, E., Tarasov, V., Varchenko, A.: Schubert calculus and representations of general linear group. J. Am. Math. Soc. 22(4), 909–940 (2009)

    Article  MathSciNet  Google Scholar 

  22. Mukhin, E., Tarasov, V., Varchenko, A.: On reality property of Wronski maps. Confluentes Math. 1(2), 225–247 (2009)

    Article  MathSciNet  Google Scholar 

  23. Osserman, B.: A limit linear series moduli scheme. Ann. Inst. Four. 56(4), 1165–1205 (2006)

    Article  MathSciNet  Google Scholar 

  24. Purbhoo, K.: Jeu de taquin and a monodromy problem for Wronksians of polynomials. Adv. Math. 224(3), 827–862 (2010)

    Article  MathSciNet  Google Scholar 

  25. Purbhoo, K.: Reality and transversality for Schubert calculus in $\rm OG(n,2n{+}1)$. Math. Res. Lett. 17(6), 1041–1046 (2010)

    Article  MathSciNet  Google Scholar 

  26. Purbhoo, K.: Wronskians, cyclic group actions, and ribbon tableaux. Trans. Am. Math. Soc. 365, 1977–2030 (2013)

    Article  MathSciNet  Google Scholar 

  27. Purbhoo, K.: A marvellous embedding of the Lagrangian Grassmannian. J. Combin. Theory Ser. A 155, 1–26 (2018)

    Article  MathSciNet  Google Scholar 

  28. Rosenthal, J., Sottile, F.: Some remarks on real and complex output feedback. Syst. Control Lett. 33, 73–80 (1998)

    Article  MathSciNet  Google Scholar 

  29. Rybnikov, L.: Cactus group and monodromy of Bethe vectors. Int. Math. Res. Not. 2018(1), 202–235 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Speyer, D.: Schubert problems with respect to osculating flags of stable rational curves. Algebra Geom. 1(1), 14–45 (2014)

    Article  MathSciNet  Google Scholar 

  31. Sottile, F.: Frontiers of reality in Schubert calculus. Bull. Am. Math. Soc. 47(1), 31–71 (2010)

    Article  MathSciNet  Google Scholar 

  32. Sottile, F.: Real Solutions to Equations From Geometry, University Lecture Series, vol. 57, AMS (2011)

  33. Sottile, F., Soprunova, E.: Lower bounds for real solutions to sparse polynomial systems. Adv. Math. 204(1), 116–151 (2006)

    Article  MathSciNet  Google Scholar 

  34. Sottile, F., White, J.: Double transitivity of Galois groups in Schubert calculus of Grassmannians. Algebra Geom. 2(4), 422–445 (2015)

    Article  MathSciNet  Google Scholar 

  35. Vakil, R.: Schubert induction. Ann. Math. 164, 489–512 (2006)

    Article  MathSciNet  Google Scholar 

  36. White, D.: Sign-balanced posets. J. Combin. Theory 95, 1–38 (2001)

    Article  MathSciNet  Google Scholar 

  37. White, N.: The Monodromy of Real Bethe Vectors for the Gaudin Model (2015). arXiv:1511.04740

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jake Levinson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of second author supported by NSERC Discovery Grant RGPIN-04741-2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levinson, J., Purbhoo, K. A topological proof of the Shapiro–Shapiro conjecture. Invent. math. 226, 521–578 (2021). https://doi.org/10.1007/s00222-021-01056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-021-01056-y

Navigation