Zero loci of Bernstein–Sato ideals


We prove a conjecture of the first author relating the Bernstein–Sato ideal of a finite collection of multivariate polynomials with cohomology support loci of rank one complex local systems. This generalizes a classical theorem of Malgrange and Kashiwara relating the b-function of a multivariate polynomial with the monodromy eigenvalues on the Milnor fibers cohomology.

This is a preview of subscription content, access via your institution.


  1. 1.

    This is called “le complexe d’Alexander” in [24].


  1. 1.

    Bahloul, R., Oaku, T.: Local Bernstein-Sato ideals: algorithm and examples. J. Symbolic Comput. 45(1), 46–59 (2010)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bath, D.: Bernstein-Sato varieties and annihilation of powers. arXiv:1907.05301. To appear in Trans. Amer. Math. Soc

  3. 3.

    Bath, D.: Combinatorially determined zeroes of Bernstein-Sato ideals for tame and free arrangements. J. Singul. 20, 165–204 (2020)

    MathSciNet  Google Scholar 

  4. 4.

    Beilinson, A., Gaitsgory, D.: A corollary of the b-function lemma. Selecta Math. (N.S.) 18(2), 319–327 (2012)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bernstein, J.: The analytic continuation of generalized functions with respect to a parameter. Functional Anal. Appl. 6, 273–285 (1972)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Björk, J.-E.: Rings of differential operators. North-Holland Math. Libr. 21, xvii+374 (1979)

    MathSciNet  Google Scholar 

  7. 7.

    Björk, J.-E.: Analytic \({{\mathscr {D}}}\)-Modules and Applications. Mathematics and its Applications, vol. 247, pp xiv+581. Kluwer academic publishers, New York (1993)

  8. 8.

    Briançon, J., Maisonobe, P., Merle, M.: Constructibilité de l’idéal de Bernstein. In: Singularities-Sapporo 1998, pp 79–95, Adv. Stud. Pure Math., 29, Kinokuniya, Tokyo (2000)

  9. 9.

    Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. pp xii+403, Cambridge University Press, Cambridge (1993)

  10. 10.

    Budur, N.: Bernstein-Sato ideals and local systems. Ann. Inst. Fourier 65(2), 549–603 (2015)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Budur, N., Liu, Y., Saumell, L., Wang, B.: Cohomology support loci of local systems. Michigan Math. J. 66(2), 295–307 (2017)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Budur, N., Wang, B.: Local systems on analytic germ complements. Adv. Math. 306, 905–928 (2017)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Grauert, H., Remmert, R.: Coherent Analytic Sheaves. Grundlehren der Mathematischen Wissenschaften, vol. 265. xviii+249, Springer, Berlin (1984)

  14. 14.

    Gyoja, A.: Bernstein-Sato’s polynomial for several analytic functions. J. Math. Kyoto Univ. 33, 399–411 (1993)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Kaledin, D.: Normalization of a Poisson algebra is Poisson. Proc. Steklov Inst. Math. 264(1), 70–73 (2009)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Kashiwara, M.: \(B\)-functions and holonomic systems. Rationality of roots of \(B\)-functions. Invent. Math. 38(1): 33–53 (1976/77)

  17. 17.

    Kashiwara, M.: Vanishing cycle sheaves and holonomic systems of differential equations. In: Algebraic Geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, pp. 134–142, Springer, Berlin (1983)

  18. 18.

    Kashiwara, M., Kawai, T.: On holonomic systems for \(\prod _{l=1}^N(f_l+\sqrt{-1}O)^{\lambda _l}\). Publ. Res. Inst. Math. Sci. 15(2), 551–575 (1979)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Loeser, F.: Fonctions zêta locales d’Igusa à plusieurs variables, intégration dans les fibres, et discriminants. Ann. Sci. École Norm. Sup. (4) 22(3), 435–471 (1989)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Maisonobe, P.: Filtration Relative, l’Idéal de Bernstein et ses pentes. arXiv:1610.03354

  21. 21.

    Malgrange, B.: Polynômes de Bernstein-Sato et cohomologie évanescente. Astérisque 101, 243 (1983)

    MathSciNet  Google Scholar 

  22. 22.

    Sabbah, C.: Proximité évanescente. I. Compositio Math. 62(3), 283–328 (1987)

    MathSciNet  Google Scholar 

  23. 23.

    Sabbah, C.: Proximité évanescente. II. Compositio Math. 64(2), 213–241 (1987)

    MathSciNet  Google Scholar 

  24. 24.

    Sabbah, C.: Modules d’Alexander et \({{\mathscr {D}}}\)-modules. Duke Math. J. 60(3), 729–814 (1990)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Walther, U.: The Jacobian module, the Milnor fiber, and the \({{\mathscr {D}}}\)-module generated by \(f^s\). Invent. Math. 207(3), 1239–1287 (2017)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Weibel, C.: An Introduction to Homological Algebra, p. xiv+450. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  27. 27.

    Wu, L., Zhou, P.: Log \({{\mathscr {D}}}\)-modules and index theorem, arXiv:1904.09276v1

Download references


We would like to thank L. Ma, P. Maisonobe, C. Sabbah for some discussions, to M. Mustaţă for drawing our attention to a mistake in the first version of this article, and to the referees for comments that helped improve the article.

The first author was partly supported by the grants STRT/13/005 and Methusalem METH/15/026 from KU Leuven, G097819N and G0F4216N from the Research Foundation - Flanders. The second author is supported by a PhD Fellowship of the Research Foundation - Flanders. The fourth author is supported by the Simons Postdoctoral Fellowship as part of the Simons Collaboration on HMS.

Author information



Corresponding author

Correspondence to Nero Budur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



We recall some facts for not-necessarily commutative rings from [7, A.III and A.IV] that we use in the proof of the main theorem.


Let A be a ring, by which we mean an associative ring with a unit element. Let \({\text{ Mod }}_{f}(A)\) be the abelian category of finitely generated left A-modules.

We say that A is a positively filtered ring if A is endowed with a \({\mathbb {Z}}\)-indexed increasing exhaustive filtration \(\{F_iA\}_{i\in {\mathbb {Z}}}\) of additive subgroups such that \(F_iA\cdot F_jA\subset F_{i+j}A\) for all ij in \({\mathbb {Z}}\), and \(F_{-1}A=0\). The associated graded object \({\text{ gr }}^FA=\oplus _i (F_iA/F_{i-1}A)\) has a natural ring structure. When we do not need to specify the filtration, we write \({\text{ gr }}\,A\) for \({\text{ gr }}^FA\).

If A is a positively filtered ring such that \({\text{ gr }}\,A\) is noetherian, then A is noetherian, [7, A.III 1.27]. Here, noetherian means both left and right noetherian.


Let A be a noetherian ring, positively filtered. A good filtration on \(M\in {\text{ Mod }}_f(A)\) is an increasing exhaustive filtration \(F_\bullet M\) of additive subgroups such that \(F_iA\cdot F_jM\subset F_{i+j}M\) for all ij in \({\mathbb {Z}}\), and such that its associated graded object \({\text{ gr }}\,M\) is a finitely generated graded module over \({\text{ gr }}\,A\), cf. [7, A.III 1.29].

Proposition 4.2.1

([7, A.III 3.20–3.23]) Let A be a noetherian ring, positively filtered.

  1. (1)

    Let M be in \({\text{ Mod }}_f(A)\) with a good filtration. Then the radical of the annihilator ideal in \({\text{ gr }}\,A\)

    $$\begin{aligned} J(M):=\sqrt{{\text{ Ann }}_{{\text{ gr }}\,A}({\text{ gr }}\,M)} \end{aligned}$$

    and the multiplicities \(m_{\mathfrak {p}}(M)\) of \({\text{ gr }}\,M\) at minimal primes \({\mathfrak {p}}\) of J(M) do not depend on the choice of a good filtration.

  2. (2)


    $$\begin{aligned} 0\rightarrow M'\rightarrow M\rightarrow M''\rightarrow 0 \end{aligned}$$

    is an exact sequence in \({\text{ Mod }}_f(A)\) then

    $$\begin{aligned} J(M)=J(M')\cap J(M'') \end{aligned}$$

    and if \({\mathfrak {p}}\) is a minimal prime of J(M) then

    $$\begin{aligned} m_{\mathfrak {p}}(M)=m_{\mathfrak {p}}( M')+m_{\mathfrak {p}}( M''). \end{aligned}$$

Note that the last assertion is equivalent to the existence of a \({\mathbb {Z}}\)-valued additive map \(m_{{\mathfrak {p}}}\) on the Grothendieck group generated by the finitely generated modules N over \({\text{ gr }}\,A\) with \(J(M)\subset \sqrt{{\text{ Ann }}_{{\text{ gr }}\,A} N}\), as it is phrased in loc. cit.

Proposition 4.2.2

([7, A.IV 4.5]) Let A be a noetherian ring, positively filtered. Let M be in \({\text{ Mod }}_f(A)\) with a good filtration. For every \(k\ge 0\), there exists a good filtration on the right A-module \({\text{ Ext }}^k_A(M,A)\) such that \({\text{ gr }}\,({\text{ Ext }}^k_A(M,A))\) is a subquotient of \({\text{ Ext }}^k_{{\text{ gr }}\,A}({\text{ gr }}\,M,{\text{ gr }}\,A)\).


Let A be a noetherian ring. The smallest \(k\ge 0\) for which every M in \({\text{ Mod }}_f(A)\) has a projective resolution of length \(\le k\) is called the homological dimension of A and it is denoted by \( \text{ gl.dim }(A). \)

Definition 4.3.1

For a nonzero M in \({\text{ Mod }}_f(A)\), the smallest integer \(k\ge 0\) such that \({\text{ Ext }}^k_A(M,A)\ne 0\) is denoted

$$\begin{aligned} j_A(M) \end{aligned}$$

and it is called the grade number of M. If \(M=0\) the grade number is taken to be \(\infty \).

The ring A is Auslander regular if it has finite homological dimension and, for every M in \({\text{ Mod }}_f(A)\), every \(k\ge 0\), and every nonzero right submodule N of \({\text{ Ext }}^k_A(M,A)\), one has \(j_A(N)\ge k\). This implies the similar condition phrased for right A-modules M, see [7, A.IV 1.10] and the comment thereafter.

Theorem 4.3.2

([7, A.IV 5.1]) If A is a positively filtered ring such that \({\text{ gr }}\,A\) is a regular commutative ring, then A is an Auslander regular ring.

Proposition 4.3.3

([7, A.IV 1.11]) Let A be an Auslander regular ring. Then

$$\begin{aligned} \text{ gl.dim }(A)=\sup \{j_A(M)\mid 0\ne M\in {\text{ Mod }}_f(A)\}. \end{aligned}$$

Definition 4.3.4

A nonzero module M in \({\text{ Mod }}_f(A)\) is j-pure (or simply, pure) if \(j_A(N)=j_A(M)=j\) for every nonzero submodule N.

Lemma 4.3.5

([7, A.IV 2.6]) Let A be an Auslander regular ring, M nonzero in \({\text{ Mod }}_f(A)\), and \(j=j_A(M)\). Then:

  1. (1)

    \({\text{ Ext }}^j_A(M,A)\) is a j-pure right A-module;

  2. (2)

    M is pure if and only if \({\text{ Ext }}^k_A({\text{ Ext }}^k_A(M,A),A)=0\) for every \(k\ne j\).


We assume now that A is a positively filtered ring such that \({\text{ gr }}\,A\) is a regular commutative ring. Then A is also Auslander regular by Theorem 4.3.2. Moreover, with these assumptions one has the following two results.

Proposition 4.4.1

([7, A.IV 4.10 and 4.11]) If M in \({\text{ Mod }}_f(A)\) is j-pure, there exists a good filtration on M such that \({\text{ gr }}\,M\) is a j-pure \({\text{ gr }}\,A\)-module.

Proposition 4.4.2

([7, A.IV 4.15]) For any M in \({\text{ Mod }}_f(A)\) and any good filtration on M,

$$\begin{aligned} j_A(M)=j_{{\text{ gr }}\,A}({\text{ gr }}\,M). \end{aligned}$$


Lastly, we consider a regular commutative ring A. Then \(\mathrm{gl.dim.}(A)=\sup \{\mathrm{gl.dim.}(A_{\mathfrak {m}})\mid {\mathfrak {m}}\subset A\text { maximal ideal}\,\}\), cf. [6, Ch. 2, 5.20]. We let \(\dim (A)\) denote the Krull dimension. For a module \(M\in {\text{ Mod }}_f(A)\), \(\dim _A(M)\) denotes \(\dim (A/ {\text{ Ann }}_A(M))\). If A is a regular local commutative ring, then \(\dim (A)=\mathrm{gl.dim.}(A)\), cf. [7, A.IV 3.5].

Proposition 4.5.1

Let A be a regular commutative ring and M nonzero in \({\text{ Mod }}_f(A)\). Then:

  1. (i)

    ([7, A.IV 3.4]) A is Auslander regular;

  2. (ii)

    ([6, Ch. 2, Thm. 7.1]) if \(\dim (A_{\mathfrak {m}})=m\) for every maximal ideal \({\mathfrak {m}}\) of A,

    $$\begin{aligned} j_A(M)+\dim _A(M) = m\, ; \end{aligned}$$
  3. (iii)

    ([7, A.IV 3.7 and 3.8]) M is a pure A-module if and only if every associated prime of M is a minimal prime of M and \(j_A(M)=\dim (A_{{\mathfrak {p}}})\) for every minimal prime \({\mathfrak {p}}\) of M.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Budur, N., van der Veer, R., Wu, L. et al. Zero loci of Bernstein–Sato ideals. Invent. math. (2021).

Download citation

Mathematics subject classification

  • 14F10
  • 13N10
  • 32C38
  • 32S40
  • 32S55