Skip to main content
Log in

Exponential decay of correlations in the two-dimensional random field Ising model

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We study the random field Ising model on \({\mathbb {Z}}^2\) where the external field is given by i.i.d. Gaussian variables with mean zero and positive variance. We show that the effect of boundary conditions on the magnetization in a finite box decays exponentially in the distance to the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aizenman, M., Burchard, A.: Hölder regularity and dimension bounds for random curves. Duke Math. J. 99(3), 419–453 (1999)

    Article  MathSciNet  Google Scholar 

  2. Aizenman, M., Harel, M., Peled, R.: Exponential decay of correlations in the \(2d\) random field Ising model. J. Stat. Phys. to appear

  3. Aizenman, M., Peled, R.: A power-law upper bound on the correlations in the \(2D\) random field Ising model. Commun. Math. Phys. 372(3), 865–892 (2019)

    Article  MathSciNet  Google Scholar 

  4. Aizenman, M., Wehr, J.: Rounding of first-order phase transitions in systems with quenched disorder. Phys. Rev. Lett. 62(21), 2503–2506 (1989)

    Article  MathSciNet  Google Scholar 

  5. Aizenman, M., Wehr, J.: Rounding effects of quenched randomness on first-order phase transitions. Commun. Math. Phys. 130(3), 489–528 (1990)

    Article  MathSciNet  Google Scholar 

  6. Berretti, A.: Some properties of random Ising models. J. Stat. Phys. 38(3–4), 483–496 (1985)

    MathSciNet  MATH  Google Scholar 

  7. Bricmont, J., Kupiainen, A.: The hierarchical random field Ising model. J. Stat. Phys. 51(5–6), 1021–1032 (1988). New directions in statistical mechanics (Santa Barbara, CA, 1987)

    Article  MathSciNet  Google Scholar 

  8. Bricmont, J., Kupiainen, A.: Phase transition in the \(3\)d random field Ising model. Commun. Math. Phys. 116(4), 539–572 (1988)

    Article  Google Scholar 

  9. Camia, F., Jiang, J., Newman, C.M.: A note on exponential decay in the random field Ising model. J. Stat. Phys. 173(2), 268–284 (2018)

    Article  MathSciNet  Google Scholar 

  10. Chatterjee, S.: On the decay of correlations in the random field Ising model. Commun. Math. Phys. 362(1), 253–267 (2018)

    Article  MathSciNet  Google Scholar 

  11. Damron, M., Tang, P.: Superlinearity of geodesic length in 2d critical first-passage percolation. Preprint (2019), arXiv:1902.03302

  12. Derrida, B., Shnidman, Y.: Possible line of critical points for a random field ising model in dimension 2. J. Phys. Lett. 45(12), 577–581 (1984)

    Article  Google Scholar 

  13. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89–103 (1971)

    Article  MathSciNet  Google Scholar 

  14. Fröhlich, J., Imbrie, J.Z.: Improved perturbation expansion for disordered systems: beating Griffiths singularities. Commun. Math. Phys. 96(2), 145–180 (1984)

    Article  MathSciNet  Google Scholar 

  15. Grinstein, G., Ma, S.-K.: Roughening and lower critical dimension in the random-field ising model. Phys. Rev. Lett. 49, 685–688 (1982)

    Article  Google Scholar 

  16. Imbrie, J.Z.: The ground state of the three-dimensional random-field Ising model. Commun. Math. Phys. 98(2), 145–176 (1985)

    Article  MathSciNet  Google Scholar 

  17. Imry, Y., Ma, S.-K.: Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett. 35, 1399–1401 (1975)

    Article  Google Scholar 

  18. Sheffield, S.: Random surfaces. Astérisque, (304):vi+175, (2005)

  19. van den Berg, J.: A uniqueness condition for Gibbs measures, with application to the \(2\)-dimensional Ising antiferromagnet. Commun. Math. Phys. 152(1), 161–166 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Tom Spencer for introducing the problem to us, thank Steve Lalley for many interesting discussions and thank Subhajit Goswami, Steve Lalley for a careful reading of an earlier version of the manuscript. We also thank Michael Aizenman and Ron Peled for helpful conversations. We thank two anonymous referees for many helpful suggestions on exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by NSF Grant DMS-1757479 and an Alfred Sloan fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Xia, J. Exponential decay of correlations in the two-dimensional random field Ising model. Invent. math. 224, 999–1045 (2021). https://doi.org/10.1007/s00222-020-01024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-020-01024-y

Navigation