Skip to main content
Log in

The polynomial method over varieties

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We establish sharp estimates that adapt the polynomial method to arbitrary varieties. These include a partitioning theorem, estimates on polynomials vanishing on fixed sets and bounds for the number of connected components of real algebraic varieties. As a first application, we provide a general incidence estimate that is tight in its dependence on the size, degree and dimension of the varieties involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barone, S., Basu, S.: Refined bounds on the number of connected components of sign conditions on a variety. Discrete Comput. Geom. 47(3), 577–597 (2012)

    Article  MathSciNet  Google Scholar 

  2. Barone, S., Basu, S.: On a real analog of Bezout inequality and the number of connected components of sign conditions. Proc. Lond. Math. Soc. 3(112), 115–145 (2016)

    Article  MathSciNet  Google Scholar 

  3. Basu, S., Pollack, R., Roy, M.-F.: Betti number bounds, applications and algorithms. Current trends in combinatorial and computational geometry: papers from the special program at MSRI, MSRI Publications, vol. 52, pp. 87-97. Cambridge University Press, Cambridge (2005)

  4. Basu, S., Sombra, M.: Polynomial partitioning on varieties of codimension two and point-hypersurface incidences in four dimensions. Discrete Comput. Geom. 55(1), 158–184 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bombieri, E., Pila, J.: The number of integral points on arcs and ovals. Duke Math. J. 59(2), 337–357 (1989)

    Article  MathSciNet  Google Scholar 

  6. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, 2nd edn. Springer, Berlin (1998)

    Book  Google Scholar 

  7. Bohman, T., Keevash, P.: The early evolution of the H-free process. Invent. Math. 181, 291–336 (2010)

    Article  MathSciNet  Google Scholar 

  8. Bollobás, B.: VI.2 Complete Subgraphs of r-partite Graphs. Extremal Graph Theory, pp. 309–326. Dover Publications Inc., Mineola (2004)

    Google Scholar 

  9. Brass, P., Knauer, C.: On counting point-hyperplane incidences. Comput. Geom. Theory Appl. 25(1–2), 13–20 (2003)

    Article  MathSciNet  Google Scholar 

  10. Chardin, M.: Une majoration de la fonction de Hilbert et ses conséquences pour l’interpolation algébrique. Bull. Soc. Math. Fr. 117, 305–318 (1989)

    Article  Google Scholar 

  11. Chardin, M., Philippon, P.: Régularité et interpolation. J. Algebr. Geom. 8, 471–481 (1999)

    MATH  Google Scholar 

  12. Clarkson, K., Edelsbrunner, H., Guibas, L., Sharir, M., Welzl, E.: Combinatorial complexity bounds for arrangements of curves and surfaces. Discrete Comput. Geom. 5, 99–160 (1990)

    Article  MathSciNet  Google Scholar 

  13. Do, T., Sheffer, A.: A general incidence bound in \({\mathbb{R}}^d\) and related problems, arXiv:1806.04230

  14. Dvir, Z.: On the size of Kakeya sets in finite fields. J. Am. Math. Soc. 22(4), 1093–1097 (2009)

    Article  MathSciNet  Google Scholar 

  15. Dvir, Z.: Incidence theorems and their applications. Found. Trends Theor. Comput. Sci. 6, 257–393 (2012)

    Article  MathSciNet  Google Scholar 

  16. Elekes, G., Szabo, E.: How to find groups? (and how to use them in Erdös geometry?). Combinatorica 32(5), 537–571 (2012)

    Article  MathSciNet  Google Scholar 

  17. Fox, J., Pach, J., Sheffer, A., Suk, A., Zahl, J.: Zarankiewicz’s problem for semi-algebraic hypergraphs. J. Eur. Math. Soc. (JEMS) 19(6), 1785–1810 (2017)

    Article  MathSciNet  Google Scholar 

  18. Guth, L.: The polynomial Method in Combinatorics. University Lecture Series. American Mathematical Society, Providence (2016)

    Book  Google Scholar 

  19. Guth, L.: The endpoint case of the Bennett-Carbery-Tao multilinear Kakeya conjecture. Acta Math. 205(2), 263–286 (2010)

    Article  MathSciNet  Google Scholar 

  20. Guth, L.: Polynomial partitioning for a set of varieties. Math. Proc. Camb. Philos. Soc. 159, 459–469 (2015)

    Article  MathSciNet  Google Scholar 

  21. Guth, L.: A restriction estimate using polynomial partitioning. J. Am. Math. Soc. 29(2), 371–413 (2016)

    Article  MathSciNet  Google Scholar 

  22. Guth, L., Katz, N.: On the Erdös distinct distance problem in the plane. Ann. Math. 181(1), 155–190 (2015)

    Article  MathSciNet  Google Scholar 

  23. Guth, L., Zahl, J.: Curves in \({\mathbb{R}}^4\) and two-rich points. Discrete Comput. Geom. 58, 232–253 (2017)

    Article  MathSciNet  Google Scholar 

  24. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, No. 52. Springer, Heidelberg (1977)

  25. Heath-Brown, D.R.: The density of rational points on curves and surfaces. Ann. Math. 155(2), 553–595 (2002)

    Article  MathSciNet  Google Scholar 

  26. Kaplan, H., Matousek, J., Sharir, M.: Simple proofs of classical theorems in discrete geometry via the Guth-Katz polynomial partitioning technique. Discrete Comput. Geom. 48, 499–517 (2012)

    Article  MathSciNet  Google Scholar 

  27. Kaplan, H., Matousek, J., Safernova, Z., Sharir, M.: Unit distances in three dimensions. Comb. Probab. Comput. 21, 597–610 (2012)

    Article  MathSciNet  Google Scholar 

  28. Kövári, T., Sós, V., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3, 50–57 (1954)

    Article  MathSciNet  Google Scholar 

  29. Lund, B., Sheffer, A., De Zeeuw, F.: Bisector energy and few distinct distances. Discrete Comput. Geom. 56, 337–356 (2016)

    Article  MathSciNet  Google Scholar 

  30. Milnor, J.: On the Betti numbers of real varieties. Proc. Am. Math. Soc. 15, 275–280 (1964)

    Article  MathSciNet  Google Scholar 

  31. Matousek, J., Patáková, Z.: Multilevel polynomial partitions and simplified range searching. Discrete Comput. Geom. 54(1), 22–41 (2015)

    Article  MathSciNet  Google Scholar 

  32. Oleinik, O.A., Petrovskii, I.G.: On the topology of real algebraic surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 13, 389–402 (1949)

    MathSciNet  Google Scholar 

  33. Pach, J., Sharir, M.: On the number of incidences between points and curves. Comb. Probab. Comput. 7, 121–127 (1998)

    Article  MathSciNet  Google Scholar 

  34. Sharir, M., Sheffer, A., Solomon, N.: Incidences with curves in \({\mathbb{R}}^d\). Electron. J. Comb. 23, 4–16 (2016)

    MATH  Google Scholar 

  35. Solymosi, J., Tao, T.: An incidence theorem in higher dimensions. Discrete Comput. Geom. 48, 255–280 (2012)

    Article  MathSciNet  Google Scholar 

  36. Szemerédi, E., Trotter, W.T.: Extremal problems in discrete geometry. Combinatorica 3, 381–392 (1983)

    Article  MathSciNet  Google Scholar 

  37. Tao, T.: Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory. EMS Surv. Math. Sci. 1, 1–46 (2014)

    Article  MathSciNet  Google Scholar 

  38. Thom, R.: Sur l’homologie des variétés algébriques réelles. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 255–265, Princeton University Press (1965)

  39. Walsh, M.: Characteristic subsets and the polynomial method. In: Proceedings of the International Congress of Mathematicians (2018)

  40. Walsh, M.: Concentration estimates for algebraic intersections, arXiv:1906.05843

  41. Zahl, J.: An improved bound on the number of point-surface incidences in three dimensions. Contrib. Discrete Math. 8, 100–121 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Zarankiewicz, K.: Problem P 101. Colloq. Math. 2, 301 (1951)

    Google Scholar 

Download references

Acknowledgements

Part of this work was carried while the author was a Clay Research Fellow and a Fellow of Merton College at the University of Oxford. The author would like to thank Cosmin Pohoata and Martin Sombra for pointing out some typos in an earlier version of this manuscript, as well as an anonymous referee for some helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel N. Walsh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, M.N. The polynomial method over varieties. Invent. math. 222, 469–512 (2020). https://doi.org/10.1007/s00222-020-00975-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-020-00975-6

Navigation