Abstract
We establish sharp estimates that adapt the polynomial method to arbitrary varieties. These include a partitioning theorem, estimates on polynomials vanishing on fixed sets and bounds for the number of connected components of real algebraic varieties. As a first application, we provide a general incidence estimate that is tight in its dependence on the size, degree and dimension of the varieties involved.
Similar content being viewed by others
References
Barone, S., Basu, S.: Refined bounds on the number of connected components of sign conditions on a variety. Discrete Comput. Geom. 47(3), 577–597 (2012)
Barone, S., Basu, S.: On a real analog of Bezout inequality and the number of connected components of sign conditions. Proc. Lond. Math. Soc. 3(112), 115–145 (2016)
Basu, S., Pollack, R., Roy, M.-F.: Betti number bounds, applications and algorithms. Current trends in combinatorial and computational geometry: papers from the special program at MSRI, MSRI Publications, vol. 52, pp. 87-97. Cambridge University Press, Cambridge (2005)
Basu, S., Sombra, M.: Polynomial partitioning on varieties of codimension two and point-hypersurface incidences in four dimensions. Discrete Comput. Geom. 55(1), 158–184 (2016)
Bombieri, E., Pila, J.: The number of integral points on arcs and ovals. Duke Math. J. 59(2), 337–357 (1989)
Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, 2nd edn. Springer, Berlin (1998)
Bohman, T., Keevash, P.: The early evolution of the H-free process. Invent. Math. 181, 291–336 (2010)
Bollobás, B.: VI.2 Complete Subgraphs of r-partite Graphs. Extremal Graph Theory, pp. 309–326. Dover Publications Inc., Mineola (2004)
Brass, P., Knauer, C.: On counting point-hyperplane incidences. Comput. Geom. Theory Appl. 25(1–2), 13–20 (2003)
Chardin, M.: Une majoration de la fonction de Hilbert et ses conséquences pour l’interpolation algébrique. Bull. Soc. Math. Fr. 117, 305–318 (1989)
Chardin, M., Philippon, P.: Régularité et interpolation. J. Algebr. Geom. 8, 471–481 (1999)
Clarkson, K., Edelsbrunner, H., Guibas, L., Sharir, M., Welzl, E.: Combinatorial complexity bounds for arrangements of curves and surfaces. Discrete Comput. Geom. 5, 99–160 (1990)
Do, T., Sheffer, A.: A general incidence bound in \({\mathbb{R}}^d\) and related problems, arXiv:1806.04230
Dvir, Z.: On the size of Kakeya sets in finite fields. J. Am. Math. Soc. 22(4), 1093–1097 (2009)
Dvir, Z.: Incidence theorems and their applications. Found. Trends Theor. Comput. Sci. 6, 257–393 (2012)
Elekes, G., Szabo, E.: How to find groups? (and how to use them in Erdös geometry?). Combinatorica 32(5), 537–571 (2012)
Fox, J., Pach, J., Sheffer, A., Suk, A., Zahl, J.: Zarankiewicz’s problem for semi-algebraic hypergraphs. J. Eur. Math. Soc. (JEMS) 19(6), 1785–1810 (2017)
Guth, L.: The polynomial Method in Combinatorics. University Lecture Series. American Mathematical Society, Providence (2016)
Guth, L.: The endpoint case of the Bennett-Carbery-Tao multilinear Kakeya conjecture. Acta Math. 205(2), 263–286 (2010)
Guth, L.: Polynomial partitioning for a set of varieties. Math. Proc. Camb. Philos. Soc. 159, 459–469 (2015)
Guth, L.: A restriction estimate using polynomial partitioning. J. Am. Math. Soc. 29(2), 371–413 (2016)
Guth, L., Katz, N.: On the Erdös distinct distance problem in the plane. Ann. Math. 181(1), 155–190 (2015)
Guth, L., Zahl, J.: Curves in \({\mathbb{R}}^4\) and two-rich points. Discrete Comput. Geom. 58, 232–253 (2017)
Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, No. 52. Springer, Heidelberg (1977)
Heath-Brown, D.R.: The density of rational points on curves and surfaces. Ann. Math. 155(2), 553–595 (2002)
Kaplan, H., Matousek, J., Sharir, M.: Simple proofs of classical theorems in discrete geometry via the Guth-Katz polynomial partitioning technique. Discrete Comput. Geom. 48, 499–517 (2012)
Kaplan, H., Matousek, J., Safernova, Z., Sharir, M.: Unit distances in three dimensions. Comb. Probab. Comput. 21, 597–610 (2012)
Kövári, T., Sós, V., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3, 50–57 (1954)
Lund, B., Sheffer, A., De Zeeuw, F.: Bisector energy and few distinct distances. Discrete Comput. Geom. 56, 337–356 (2016)
Milnor, J.: On the Betti numbers of real varieties. Proc. Am. Math. Soc. 15, 275–280 (1964)
Matousek, J., Patáková, Z.: Multilevel polynomial partitions and simplified range searching. Discrete Comput. Geom. 54(1), 22–41 (2015)
Oleinik, O.A., Petrovskii, I.G.: On the topology of real algebraic surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 13, 389–402 (1949)
Pach, J., Sharir, M.: On the number of incidences between points and curves. Comb. Probab. Comput. 7, 121–127 (1998)
Sharir, M., Sheffer, A., Solomon, N.: Incidences with curves in \({\mathbb{R}}^d\). Electron. J. Comb. 23, 4–16 (2016)
Solymosi, J., Tao, T.: An incidence theorem in higher dimensions. Discrete Comput. Geom. 48, 255–280 (2012)
Szemerédi, E., Trotter, W.T.: Extremal problems in discrete geometry. Combinatorica 3, 381–392 (1983)
Tao, T.: Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory. EMS Surv. Math. Sci. 1, 1–46 (2014)
Thom, R.: Sur l’homologie des variétés algébriques réelles. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 255–265, Princeton University Press (1965)
Walsh, M.: Characteristic subsets and the polynomial method. In: Proceedings of the International Congress of Mathematicians (2018)
Walsh, M.: Concentration estimates for algebraic intersections, arXiv:1906.05843
Zahl, J.: An improved bound on the number of point-surface incidences in three dimensions. Contrib. Discrete Math. 8, 100–121 (2013)
Zarankiewicz, K.: Problem P 101. Colloq. Math. 2, 301 (1951)
Acknowledgements
Part of this work was carried while the author was a Clay Research Fellow and a Fellow of Merton College at the University of Oxford. The author would like to thank Cosmin Pohoata and Martin Sombra for pointing out some typos in an earlier version of this manuscript, as well as an anonymous referee for some helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Walsh, M.N. The polynomial method over varieties. Invent. math. 222, 469–512 (2020). https://doi.org/10.1007/s00222-020-00975-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-020-00975-6

