Skip to main content
Log in

On Kronecker terms over global function fields

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We establish a general Kronecker limit formula of arbitrary rank over global function fields with Drinfeld period domains playing the role of upper-half plane. The Drinfeld–Siegel units come up as equal characteristic modular forms replacing the classical \(\Delta \). This leads to analytic means of deriving a Colmez-type formula for “stable Taguchi height” of CM Drinfeld modules having arbitrary rank. A Lerch-Type formula for “totally real” function fields is also obtained, with the Heegner cycle on the Bruhat–Tits buildings intervene. Also our limit formula is naturally applied to the special values of both the Rankin–Selberg L-functions and the Godement–Jacquet L-functions associated to automorphic cuspidal representations over global function fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreatta, F., Goren, E. Z., Howard, B., Pera, K. M.: Faltings heights of abelian varieties with complex multiplication, arXiv:1508.00178v3

  2. Beilinson, A.: Higher regulators of modular curves, Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Part I. In: Proceedings of a Summer Research Conference held June 12–18, 1983, in Boulder, Colorado, Contemporary Mathematics 55, American Mathematical Society, Providence, Rhode Island p. 1–34

  3. Barquero-Sanchez, A., Cadwallader, L., Cannon, O., Genao, T., Masri, R.: Faltings heights of CM elliptic curves and special Gamma values. Res. Number Theory (2017). https://doi.org/10.1007/s40993-017-0077-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Bump, D., Goldfeld, D.: A Kronecker limit formula for cubic fields Modular forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester pp 43–49, (1984)

  5. Colmez, P.: Périodes des variétés abéliennes à multiplication complexe. Ann. Math. 138, 625–683 (1993)

    Article  MathSciNet  Google Scholar 

  6. Deligne, P., Husemöller, D.: Survey of Drinfeld modules. Contemp. Math. 67, 25–91 (1987)

    Article  MathSciNet  Google Scholar 

  7. Drinfeld, V.G.: Elliptic modules. Math. USSR Sbornik 23(4), 561–592 (1974)

    Article  Google Scholar 

  8. Gekeler, E.-U.: Drinfeld modular curves, Lecture Notes in Mathematics vol. 1231, Springer (1986)

  9. Gekeler, E.-U.: On the Drinfeld discriminant function. Compositio Math. 106(2), 181–202 (1997)

    Article  MathSciNet  Google Scholar 

  10. Gekeler, E.-U., Reversat, M.: Jacobians of Drinfeld modular curves. J. Reine Angew. Math. 476, 27–93 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Gelbart, S., Piatitski-Shapiro, I., Rallis, S.: Explicit constructions of automorphic \(L\)-functions, Lecture notes in mathematics, vol. 1254, Springer, (1980)

  12. Godement, R., Jacquet, H.: Zeta functions of simple algebras, Lecture notes in mathematics, vol. 260, Springer (1972)

  13. Goss, D.: Basic structures of function field arithmetic. Springer, Berlin (1996)

    Book  Google Scholar 

  14. Hartl, U., Singh, R. K.: Periods of Drinfeld modules and local shtukas with complex multiplication, to appear in Journal of the Institute of Mathematics of Jussieu (arXiv:1603.03194) (2017)

  15. Hayes, D.: Explicit class field theory in global function fields. Stud. Algebra Number Theory 6, 173–217 (1979)

    MathSciNet  Google Scholar 

  16. Hayes, D.: Elliptic units in function fields in number theory related to Fermat’s last theorem. Prog. Math. 22, 321–340 (1982)

    Article  Google Scholar 

  17. Hayes, D.: Stickelberger elements in function fields. Compositio Math. 55(2), 209–239 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Hecke, E.: Über die Kroneckersche Grenzformel für reelle quadratische Körper und die Klassenzahl relative Abelscher Körper, Werke, 198–207

  19. Ihara, Y.: On the Euler–Kronecker constants of global fields and primes with small norms. In: Algebraic Geometry and Number Theory, Honor of Vladimir Drinfeld 50th Birthday, (V. Ginzburg ed.), Progress in Mathematics, vol. 253, pp. 407–451 (2006)

  20. Jacquet, H., Shalika, J.: On Euler products and the classification of automorphic representations I. Am. J. Math. 103, 499–588 (1981)

    Article  MathSciNet  Google Scholar 

  21. Kondo, S.: Kronecker limit formula for Drinfeld modules. J. Number Theory 104, 373–377 (2004)

    Article  MathSciNet  Google Scholar 

  22. Kondo, S., Yasuda, S.: Zeta elements in the \(K\)-theory of Drinfeld modular varieties. Mathematische Annalen 354, 529–587 (2012)

    Article  MathSciNet  Google Scholar 

  23. Liu, S.C., Masri, R.: A Kronecker limit formula for totally real fields and arithmetic applications. Res. Number Theory 1, 8 (2015). https://doi.org/10.1007/s40993-015-0009-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Obus, A.: On Colmez product formula for periods of CM-abelian varieties. Mathematische Annalen 356(2), 401–418 (2013)

    Article  MathSciNet  Google Scholar 

  25. Pál, A.: On the torsion of the Mordell–Weil group of the Jacobian of Drinfeld modular curves. Documenta Math. 10, 131–198 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Rosen, M.: Number Theory in Function Fields. Graduate Texts in Mathematics, vol. 210. Springer, New York (2002)

    Book  Google Scholar 

  27. Sarnak, P., Shahidi, F.: Automorphic Forms and Applications. IAS/Park City mathematics series, vol. 12, (2007)

  28. Taguchi, Y.: Semi-simplicity of the Galois representations attached to Drinfeld modules over fields of “infinite characteristics”. J. Number Theory 44, 292–314 (1993)

    Article  MathSciNet  Google Scholar 

  29. Wei, F.-T.: Kronecker limit formula over global function fields. Am. J. Math. 139(4), 1047–1084 (2017)

    Article  MathSciNet  Google Scholar 

  30. Weil, A.: Basic number theory. Grundlehren der mathematischen Wissenschaften (English) 3rd ed. (1973)

  31. Weil, A.: Adeles and algebraic groups. Progress in Mathematics, vol 23. Birkhäuser, Boston, Basel (1982)

  32. Yang, T.: The Chowla–Selberg formula and the Colmez conjecture. Can. J. Math. 62(2), 456–472 (2010)

    Article  MathSciNet  Google Scholar 

  33. Yuan, X., Zhang, S.-W.: On the averaged Colmez conjecture. Ann. Math. 187, 533–638 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is very grateful to Jing Yu and Chieh-Yu Chang for their steady interest, encouragements, and very useful suggestions. He would also like to thank Mihran Papikian for helpful discussions. The author is deeply appreciate the anonymous referee for very careful reading and many useful comments to improve the manuscript. This work is supported by the Ministry of Science and Technology (Grant Nos. 105-2115-M-007-018-MY2 and 107-2628-M-007-004-MY4) and the National Center for Theoretical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Tsun Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

CM theory of Drinfeld modules

CM theory of Drinfeld modules

Let \(\rho \) be a Drinfeld A-module of rank r over \({\mathbb C}_\infty \). For \(f \in {\text {End}}_A(\rho /{\mathbb C}_\infty ) \subset {\mathbb C}_\infty \{\tau \}\), let \(d_f\) be the constant term of f. Put

$$\begin{aligned} \mathcal {O}:= \{d_f : f \in {\text {End}}_A(\rho /{\mathbb C}_\infty ) \} \subset {\mathbb C}_\infty . \end{aligned}$$

Then \((f \mapsto d_f)\) gives a ring isomorphism from \({\text {End}}_A(\rho /{\mathbb C}_\infty )\) to \(\mathcal {O}\) (cf. [26, Theorem 13.25]). In particular, it is known that:

  • Let \(\Lambda _\rho \subset {\mathbb C}_\infty \) be the A-lattice associated to \(\rho \). Then \(\mathcal {O}= \{ c \in {\mathbb C}_\infty : c \Lambda _\rho \subset \Lambda _\rho \}\);

  • The field K of fractions of \(\mathcal {O}\) is imaginary (i.e. \(\infty \) is not split in K) with \([K:k] \mid r\).

For \(c \in \mathcal {O}\), we let \(\rho _c\) be the endomorphism of \(\rho \) with \(d_{\rho _c} = c\).

The A-lattice \(\Lambda _\rho \) can be viewed as an \(\mathcal {O}\)-module. We may say that two Drinfeld A-modules \(\rho _1\) and \(\rho _2\) of rank r over \({\mathbb C}_\infty \) with \({\text {End}}_A(\rho _1/{\mathbb C}_\infty ) = {\text {End}}_A(\rho _2/{\mathbb C}_\infty ) \cong \mathcal {O}\)have the same genus if \(\Lambda _{\rho _1}\otimes _A O_v \cong \Lambda _{\rho _2}\otimes _A O_v\) as \(\mathcal {O}\otimes _A O_v\)-modules for each finite place v of k.

Suppose \(\rho \) is CM (i.e. \([K:k] = r\)). Then as an \(\mathcal {O}\)-module, the lattice \(\Lambda _{\rho }\) is isomorphic to an ideal \(\mathfrak {I}\) of \(\mathcal {O}\) with

$$\begin{aligned} {\text {End}}_\mathcal {O}(\mathfrak {I}):= \{ \alpha \in K : \alpha \mathfrak {I}\subset \mathfrak {I}\} = \mathcal {O}. \end{aligned}$$

We say that \(\rho \) has principal genus if \(\Lambda _\rho \otimes _A O_v \cong \mathcal {O}\otimes _A O_v\) for each finite place v of k, or equivalently, \(\mathfrak {I}\) is an invertible ideal of \(\mathcal {O}\).

In this section, we extend the work of Hayes in [15, Theorem 8.5] on the CM theory of Drinfeld modules having principal genus to the case of arbitrary genus. More precisely, we shall prove the following theorem:

Theorem A.1

Let \(\rho \) be a CM Drinfeld A-module of rank r over \({\mathbb C}_\infty \). Identify the endomorphism ring \({\text {End}}_A(\rho /{\mathbb C}_\infty )\) with an A-order \(\mathcal {O}\) of an imaginary field K with \([K:k] = r\).

  1. (1)

    The Drinfeld A-module \(\rho \) is isomorphic (over \({\mathbb C}_\infty \)) to a CM Drinfeld A-module of rank r defined over \(H_\mathcal {O}\), where \(H_\mathcal {O}\) is the ring class field of \(\mathcal {O}\).

  2. (2)

    Suppose the Drinfeld module \(\rho \) is defined over \(H_\mathcal {O}\). Then \({\text {End}}_A(\rho /{\mathbb C}_\infty ) = {\text {End}}_A(\rho /H_\mathcal {O})\). Moreover, for an integral ideal \(\mathcal {A}\) of \(\mathcal {O}\) which is invertible, let \({\text {Frob}}_\mathcal {A}\in {\text {Gal}}(H_\mathcal {O}/K)\) be the Frobenius automorphism associated to \(\mathcal {A}\) via the Artin map. Then

    $$\begin{aligned} {\text {Frob}}_\mathcal {A}(\rho ) \cong \mathcal {A}* \rho . \end{aligned}$$

Here \(\mathcal {A}* \rho \) is the unique Drinfeld A-module satisfying

$$\begin{aligned} \rho _\mathcal {A}\cdot \rho _a = (\mathcal {A}* \rho )_a \cdot \rho _\mathcal {A}, \quad \forall a \in A, \end{aligned}$$

where \(\rho _\mathcal {A}\in H_\mathcal {O}\{ \tau \}\) is the monic generator of the left ideal of \(H_\mathcal {O}\{ \tau \}\) generated by endomorphisms \(\rho _c\) for all \(c \in \mathcal {A}\subset \mathcal {O}\).

Remark A.2

Let \(\rho \) be a Drinfeld module of rank r over \({\mathbb C}_\infty \) with CM by \(\mathcal {O}\). Let \(\Lambda _\rho \subset {\mathbb C}_\infty \) be the A-lattice associated to \(\rho \), which is equipped with an \(\mathcal {O}\)-module structure. Then for an invertible ideal \(\mathcal {A}\) of \(\mathcal {O}\), the A-lattice associated to \(\mathcal {A}* \rho \) is homothetic to \(\mathcal {A}^{-1} \cdot \Lambda _\rho \) (cf. [15, Proposition 5.10 and the equation (5.18)]). Suppose \(\rho \) is defined over \(H_\mathcal {O}\) (via a fixed embedding \(H_\mathcal {O}\hookrightarrow {\mathbb C}_\infty \)). Then Theorem A.1 (2) tells us that the A-lattice associated to \(\text {Frob}_\mathcal {A}(\rho )\) also lies in the homothety class of \(\mathcal {A}^{-1} \cdot \Lambda _\rho \).

We first recall the needed properties in the explicit class field theory over global function fields. Further details are referred to [13, Chapter 7] and [15].

1.1 Explicit class field theory

Let \(\rho ^o\) be a CM Drinfeld A-module of rank r over \({\mathbb C}_\infty \) so that \({\text {End}}(\rho ^o)\) is identified with \(O_K\), the integral closure of A in the imaginary field K. Viewing \(\rho \) as a Drinfeld \(O_K\)-module of rank 1, suppose \(\rho ^o\) is sign-normalized (cf. [13, Theorem 7.2.15]). Then \(\rho ^o\) is actually defined over \(O_{H^+}\), the integral closure of A in \(H^+\), where \(H^+\) is the “narrow” Hilbert class field of \(O_K\) (cf. [13, Section 7.4]). Given an ideal \(\mathfrak {A}\) of \(O_K\), let \({\text {Frob}}_\mathfrak {A}\in {\text {Gal}}(H^+/K)\) be the Frobenius automorphism associated to \(\mathfrak {A}\). Then (cf. [13, Theorem 7.4.8]):

$$\begin{aligned} {\text {Frob}}_\mathfrak {A}(\rho ^o) = \mathfrak {A}* \rho ^o. \end{aligned}$$

For an integral ideal \(\mathfrak {C}\) of \(O_K\), let

$$\begin{aligned} \rho ^o[\mathfrak {C}] := \{ \lambda \in \overline{K} : \rho ^o_a (\lambda ) = 0,\ \forall a \in \mathfrak {C}\}, \end{aligned}$$

and put \(H^+_{\mathfrak {C}} := H^+(\rho ^o[\mathfrak {C}])\). Then (cf. [13, Proposition 7.5.4 and Corollary 7.5.5]):

Theorem A.3

The field extension \(H^+_\mathfrak {C}/ K\) is abelian with

$$\begin{aligned} {\text {Gal}}(H^+_\mathfrak {C}/K ) \cong \mathcal {I}_{O_K}(\mathfrak {C})/\mathcal {P}^+_\mathfrak {C}. \end{aligned}$$

Here \(\mathcal {I}_{O_K}(\mathfrak {C})\) is the group generated by ideals of \(O_K\) coprime to \(\mathfrak {C}\), and \(\mathcal {P}^+_\mathfrak {C}\) is the subgroup generated by principal ideals \(\alpha O_K\), where \(\alpha \in O_K\) is positive and \(\alpha \equiv 1 \bmod \mathfrak {C}\). Moreover, for an integral ideal \(\mathfrak {A}\) of \(O_K\) coprime to \(\mathfrak {C}\), one has

$$\begin{aligned} {\text {Frob}}_\mathfrak {A}(\lambda ) = \rho ^o_\mathfrak {A}(\lambda ), \quad \forall \lambda \in \rho ^o[\mathfrak {C}]. \end{aligned}$$

Remark A.4

  1. (1)

    Let \(\infty _K\) be the unique place of K lying above \(\infty \) and \({\mathbb F}_{\infty _K}\) the residue field at \(\infty _K\). Then \(H^+_\mathfrak {C}/K\) is tamely ramified at \(\infty _K\) with ramification index \(\#({\mathbb F}_{\infty _K})-1\) (cf. [13, Proposition 7.5.8 and Corollary 7.5.9]).

  2. (2)

    Let \(\Lambda ^o = \Lambda _{\rho ^o}\subset {\mathbb C}_\infty \) be the A-lattice corresponding to \(\rho ^o\). Then we may write \(\rho ^o[\mathfrak {C}]\) as

    $$\begin{aligned} \rho ^o[\mathfrak {C}] = \left\{ \exp _{\Lambda ^o}(\alpha ) : \alpha \in \frac{\mathfrak {C}^{-1} \Lambda ^o}{\Lambda ^o} \right\} . \end{aligned}$$

Given an integral ideal \(\mathfrak {A}\) of \(O_K\) coprime to \(\mathfrak {C}\), recall that \(\rho ^o_\mathfrak {A}\in H^+\{\tau \}\) is the monic generator of the left ideal generated by \(\rho ^o_c\) for all \(c \in \mathfrak {A}\). let \(d_\mathfrak {A}\) be the constant term of \(\rho ^o_\mathfrak {A}\). Then we have

$$\begin{aligned} d_\mathfrak {A}= \prod _{0 \ne \lambda \in \rho ^o[\mathfrak {A}]} \lambda \quad \quad \text { and } \quad \quad \Lambda _{{\text {Frob}}_\mathfrak {A}(\rho ^o)} = \Lambda _{\mathfrak {A}* \rho ^o} = d_\mathfrak {A}\cdot \mathfrak {A}^{-1} \Lambda ^o. \end{aligned}$$

Theorem A.3 implies that

$$\begin{aligned} {\text {Frob}}_\mathfrak {A}\big (\exp _{\Lambda ^o}(\alpha )\big )= & {} \rho _\mathfrak {A}^o\big (\exp _{\Lambda ^o}(\alpha )\big ) = \exp _{d_\mathfrak {A}\mathfrak {A}^{-1} \Lambda ^o} ( d_\mathfrak {A}\alpha ), \quad \forall \alpha \in \frac{\mathfrak {C}^{-1} \Lambda ^o}{\Lambda ^o}. \nonumber \\ \end{aligned}$$
(A.1)

1.1.1 Frobenius action on Drinfeld \(\mathcal {O}\)-modules

Let \(\Lambda \subset {\mathbb C}_\infty \) be an A-lattice of rank r so that \(\mathcal {O}:= \{ c \in {\mathbb C}_\infty : c\Lambda \subset \Lambda \}\) is an A-order of an imaginary field K with \([K:k] = r\). Let \(\mathfrak {C}\lhd O_K\) be the conductor of \(\mathcal {O}\). Take \(\Lambda ^o := \mathfrak {C}\cdot \Lambda \). Then

$$\begin{aligned} O_K \cdot \Lambda = \mathfrak {C}^{-1} \cdot \Lambda ^o \supset \Lambda \supset \Lambda ^o, \end{aligned}$$

and the Drinfeld A-module \(\rho ^o\) corresponding to \(\Lambda ^o\) is CM by \(O_K\).

Assume that \(\rho ^o\) is sign-normalized (thus defined over \(H^+\)). Take

$$\begin{aligned} u(x) = u_{\Lambda /\Lambda ^o}(x) := \prod _{\alpha \in \frac{\Lambda }{\Lambda ^o}} \big (x - \exp _{\Lambda ^o}(\alpha )\big ) \quad \text {and} \quad d_u:= \prod _{0 \ne \alpha \in \frac{\Lambda }{\Lambda ^o}}\exp _{\Lambda ^o}(\alpha ). \end{aligned}$$

Then u corresponds to a twisted polynomial \(u(\tau ) \in H^+_\mathfrak {C}\{ \tau \}\) with constant term \(d_u\). Moreover, let \(\rho ^{d_u \Lambda }\) be the Drinfeld A-module corresponding to the A-lattice \(d_u \Lambda \). Then

$$\begin{aligned} u \cdot \rho ^o = \rho ^{d_u\Lambda } \cdot u, \end{aligned}$$

which tells us that \(\rho ^{d_u\Lambda }\) is defined over \(H^+_\mathfrak {C}\). In fact, we have:

Proposition A.5

The Drinfeld A-module \(\rho = \rho ^{d_u \Lambda }\) is defined over \(H^+_{\mathcal {O}}\), the “narrow” ring class field of \(\mathcal {O}\). Moreover, given an invertible ideal \(\mathcal {A}\) of \(\mathcal {O}\), let \({\text {Frob}}_\mathcal {A}\in {\text {Gal}}(H^+_{\mathcal {O}}/K)\) be the Frobenius automorphism associated to \(\mathcal {A}\). Then

$$\begin{aligned} {\text {Frob}}_\mathcal {A}(\rho ) = \mathcal {A}* \rho . \end{aligned}$$

Proof

Let \(\mathcal {I}_\mathcal {O}\) (resp. \(\mathcal {I}_\mathcal {O}(\mathfrak {C})\)) be the group generated by invertible ideals of \(\mathcal {O}\) (resp. coprime to \(\mathfrak {C}\)), and \(\mathcal {P}_\mathcal {O}^+\) (resp. \(\mathcal {P}_\mathcal {O}^+(\mathfrak {C})\)) is the subgroup generated by principal ideals \(\alpha \mathcal {O}\), where \(\alpha \) is positive (resp. and coprime to \(\mathfrak {C}\)). Then

$$\begin{aligned} {\text {Gal}}(H^+_\mathcal {O}/K) \cong {\text {Pic}}^+(\mathcal {O}) := \mathcal {I}_\mathcal {O}/ \mathcal {P}_\mathcal {O}^+\cong \mathcal {I}_\mathcal {O}(\mathfrak {C}) / \mathcal {P}_\mathcal {O}^+(\mathfrak {C}), \end{aligned}$$

and we have the following commutative diagram:

figure a

Here the vertical map on the right hand side is induced from \(\mathfrak {A}\mapsto \mathfrak {A}\cap \mathcal {O}\) for every integral ideal \(\mathfrak {A}\) of \(O_K\) coprime to \(\mathfrak {C}\). Thus to prove that \(\rho \) is defined in \(H_\mathcal {O}^+\), it suffices to show that \({\text {Frob}}_\mathfrak {A}(\rho ) = \rho \) for every integral ideal \(\mathfrak {A}\) of \(O_K\) coprime to \(\mathfrak {C}\) and \(\mathfrak {A}\cap \mathcal {O}\in \mathcal {P}_\mathcal {O}^+(\mathfrak {C})\).

Let \(\mathfrak {A}\) be an integral ideal of \(O_K\) coprime to \(\mathfrak {C}\) and \({\text {Frob}}_\mathfrak {A}\in {\text {Gal}}(H_{\mathfrak {C}}^+/K)\) be the Frobenius element corresponding to \(\mathfrak {A}\). We have

$$\begin{aligned} {\text {Frob}}_\mathfrak {A}(u) \cdot {\text {Frob}}_\mathfrak {A}(\rho ^o) = {\text {Frob}}_\mathfrak {A}(\rho ) \cdot {\text {Frob}}_\mathfrak {A}(u). \end{aligned}$$

Note that \(O_K\cdot \Lambda \) is a projective \(O_K\)-module of rank 1. Since \(\mathfrak {A}\) and \(\mathfrak {C}\) are relatively prime, one gets \(O_K \cap \mathfrak {A}^{-1} \mathfrak {C}= \mathfrak {C}\) and

$$\begin{aligned}&\Lambda ^o \subseteq \Lambda \cap \mathfrak {A}^{-1}\Lambda ^o \subseteq (O_K\Lambda ) \cap \mathfrak {A}^{-1}\mathfrak {C}\cdot (O_K\Lambda ) \\&\quad = (O_K \cap \mathfrak {A}^{-1}\mathfrak {C}) \cdot (O_K\Lambda ) = \mathfrak {C}\cdot (O_K\Lambda ) = \Lambda ^o. \end{aligned}$$

Thus \(\Lambda \cap \mathfrak {A}^{-1}\Lambda ^o = \Lambda ^o\) and we have the following isomorphism

$$\begin{aligned} \frac{\Lambda }{\Lambda ^o} \cong \frac{\Lambda + \mathfrak {A}^{-1}\Lambda ^o}{\mathfrak {A}^{-1}\Lambda ^o} \quad \text { by sending } \alpha + \Lambda ^o\hbox { to }\alpha + \mathfrak {A}^{-1}\Lambda ^o\hbox { for all } \alpha \in \Lambda . \end{aligned}$$

The equality (A.1) then implies

$$\begin{aligned} {\text {Frob}}_\mathfrak {A}(u) (x) = \prod _{\alpha ' \in \frac{d_\mathfrak {A}(\Lambda + \mathfrak {A}^{-1} \Lambda ^o)}{d_\mathfrak {A}\mathfrak {A}^{-1} \Lambda ^o}} \Big (x-\exp _{d_\mathfrak {A}\mathfrak {A}^{-1} \Lambda ^o}(\alpha ')\Big ). \end{aligned}$$

Since \({\text {Frob}}_\mathfrak {A}(\rho ^o) = \mathfrak {A}* \rho ^o\), which corresponds to the lattice \(d_\mathfrak {A}\mathfrak {A}^{-1} \Lambda ^o\), we obtain that \({\text {Frob}}_\mathfrak {A}(\rho )\) actually corresponds to the lattice

$$\begin{aligned} (d_{{\text {Frob}}_\mathfrak {A}(u)} d_\mathfrak {A})\cdot (\Lambda + \mathfrak {A}^{-1} \Lambda ^o) = (d_{{\text {Frob}}_\mathfrak {A}(u)} d_\mathfrak {A}) \cdot \mathcal {A}^{-1} \Lambda , \end{aligned}$$

where \(d_{{\text {Frob}}_\mathfrak {A}(u)}\) is the constant term of \({{\text {Frob}}_\mathfrak {A}(u)}\) and \(\mathcal {A}:= \mathfrak {A}\cap \mathcal {O}\) is an invertible ideal of \(\mathcal {O}\) coprime to \(\mathfrak {C}\). On the other hand, the lattice corresponding to \(\mathcal {A}* \rho \) is \((d_\mathcal {A}\cdot d_u) \cdot \mathcal {A}^{-1} \Lambda \), where \(d_\mathcal {A}\) is the constant term of \(\rho _\mathcal {A}\). It is straightforward that

$$\begin{aligned} d_\mathcal {A}\cdot d_u = d_{{\text {Frob}}_\mathfrak {A}(u)} d_\mathfrak {A}. \end{aligned}$$

Therefore

$$\begin{aligned} {\text {Frob}}_\mathfrak {A}(\rho )= & {} \mathcal {A}* \rho . \end{aligned}$$
(A.2)

Suppose \(\mathfrak {A}\cap \mathcal {O}= \mathcal {A}= \alpha \cdot \mathcal {O}\), where \(\alpha \) is positive. Then \(\rho _{\alpha \mathcal {O}} = \rho _\alpha \) and

$$\begin{aligned} {\text {Frob}}_\mathfrak {A}(\rho ) = (\alpha \mathcal {O}) * \rho = \rho . \end{aligned}$$

Therefore \(\rho \) is defined over \(H_\mathcal {O}^+\).

Moreover, for an invertible ideal \(\mathcal {A}\) of \(\mathcal {O}\) coprime to \(\mathfrak {C}\), we put \(\mathfrak {A}:= \mathcal {A}\cdot O_K\), and let \({\text {Frob}}_\mathcal {A}\in {\text {Gal}}(H_\mathcal {O}^+/K)\) and \({\text {Frob}}_\mathfrak {A}\in {\text {Gal}}(H_\mathfrak {C}^+/K)\) be the Frobenius elements corresponding to \(\mathcal {A}\) and \(\mathfrak {A}\), respectively. Then \({\text {Frob}}_\mathcal {A}= {\text {Frob}}_\mathfrak {A}\big |_{H_\mathcal {O}^+}\), and the Eq. (A.2) says

$$\begin{aligned} {\text {Frob}}_\mathcal {A}(\rho ) = {\text {Frob}}_\mathfrak {A}(\rho ) = \mathcal {A}* \rho , \end{aligned}$$

which completes the proof. \(\square \)

1.2 Proof of Theorem A.1

Let \(\rho \) be a CM Drinfeld A-module of rank r. Identifying \({\text {End}}(\rho )\) with an A-order \(\mathcal {O}\) of an imaginary field K, suppose \(\mathcal {O}\) has conductor \(\mathfrak {C}\). Let \(H_\rho \) be the field of invariants of \(\rho \) (cf. [15, Theorem 6.6]). Then it is known that \(H_\rho \) is contained in \(K_\infty \) (cf. [15, Proposition 6.2 and 6.4]). Therefore Proposition A.5 implies that

$$\begin{aligned} H_\rho \subset H^+_\mathcal {O}\cap K_\infty = H_\mathcal {O}. \end{aligned}$$

Let \(\Lambda _\rho \subset {\mathbb C}_\infty \) be the A-lattice corresponding to \(\rho \). Viewing \(\Lambda _\rho \) as an \(\mathcal {O}\)-module, it is the fact that for two invertible ideals \(\mathcal {A}, \mathcal {B}\) of \(\mathcal {O}\), we have

$$\begin{aligned} \mathcal {A}\cdot \Lambda _\rho \cong \mathcal {B}\cdot \Lambda _\rho \quad \text { if and only if } \quad \mathcal {A}^{-1} \mathcal {B}\text { is a principal ideal of }\mathcal {O}. \end{aligned}$$

The explicit description of Frobenius actions in Proposition A.5 then assures that

$$\begin{aligned}{}[H_\rho : K] = \#{\text {Pic}}(\mathcal {O}) = [H_\mathcal {O}:K]. \end{aligned}$$

Therefore \(H_\rho = H_\mathcal {O}\) and the Theorem holds. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, FT. On Kronecker terms over global function fields. Invent. math. 220, 847–907 (2020). https://doi.org/10.1007/s00222-019-00944-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-019-00944-8

Mathematics Subject Classification

Navigation