Skip to main content
Log in

The Bieri–Neumann–Strebel invariants via Newton polytopes

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We study the Newton polytopes of determinants of square matrices defined over rings of twisted Laurent polynomials. We prove that such Newton polytopes are single polytopes (rather than formal differences of two polytopes); this result can be seen as analogous to the fact that determinants of matrices over commutative Laurent polynomial rings are themselves polynomials, rather than rational functions. We also exhibit a relationship between the Newton polytopes and invertibility of the matrices over Novikov rings, thus establishing a connection with the invariants of Bieri–Neumann–Strebel (BNS) via a theorem of Sikorav. We offer several applications: we reprove Thurston’s theorem on the existence of a polytope controlling the BNS invariants of a 3-manifold group; we extend this result to free-by-cyclic groups, and the more general descending HNN extensions of free groups. We also show that the BNS invariants of Poincaré duality groups of type \(\mathtt {F}_{}\) in dimension 3 and groups of deficiency one are determined by a polytope, when the groups are assumed to be agrarian, that is their integral group rings embed in skew-fields. The latter result partially confirms a conjecture of Friedl. We also deduce the vanishing of the Newton polytopes associated to elements of the Whitehead groups of many groups satisfying the Atiyah conjecture. We use this to show that the \(L^2\)-torsion polytope of Friedl–Lück is invariant under homotopy. We prove the vanishing of this polytope in the presence of amenability, thus proving a conjecture of Friedl–Lück–Tillmann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agol, I.: The virtual Haken conjecture. Doc. Math. 18, 1045–1087 (2013). (With an appendix by Agol, Daniel Groves, and Jason Manning)

    MathSciNet  MATH  Google Scholar 

  2. Algom-Kfir, Y., Hironaka, E., Rafi, K.: Digraphs and cycle polynomials for free-by-cyclic groups. Geom. Topol. 19, 1111–1154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almeida, K.: The BNS-invariant for some Artin groups of arbitrary circuit rank. J. Group Theory 20, 793–806 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Almeida, K., Kochloukova, D.: The \(\Sigma ^1\)-invariant for Artin groups of circuit rank 1. Forum Math. 27, 2901–2925 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Almeida, K., Kochloukova, D.: The \(\Sigma ^1\)-invariant for some Artin groups of rank 3 presentation. Commun. Algebra 43, 702–718 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartholdi, L.: Amenability of groups is characterized by Myhill’s Theorem. J. Eur. Math. Soc. (2019). With an appendix by Dawid Kielak

  7. Baumslag, G.: Some reflections on proving groups residually torsion-free nilpotent. I. Ill. J. Math. 54, 315–325 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bieri, R.: Deficiency and the geometric invariants of a group. J. Pure Appl. Algebra 208, 951–959 (2007). (With an appendix by Pascal Schweitzer)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bieri, R., Groves, J.R.J.: The geometry of the set of characters induced by valuations. J. Reine Angew. Math. 347, 168–195 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Bieri, R., Neumann, W.D., Strebel, R.: A geometric invariant of discrete groups. Invent. Math. 90, 451–477 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bieri, R., Renz, B.: Valuations on free resolutions and higher geometric invariants of groups. Comment. Math. Helv. 63, 464–497 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brown, K.S.: Trees, valuations, and the Bieri–Neumann–Strebel invariant. Invent. Math. 90, 479–504 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cashen, C.H., Levitt, G.: Mapping tori of free group automorphisms, and the Bieri–Neumann–Strebel invariant of graphs of groups. J. Group Theory 19, 191–216 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cavallo, B., Delgado, J., Kahrobaei, D., Ventura, E.: Algorithmic recognition of infinite cyclic extensions. J. Pure Appl. Algebra 221, 2157–2179 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohn, P.M.: Skew field constructions. In: London Mathematical Society Lecture Note Series, No. 27. Cambridge University Press, Cambridge, 1977

  16. Davis, M.W.: Poincaré duality groups. In: Surveys on Surgery Theory, Volume 145 of Annals of Mathematics Studies, vol. 1, pp. 167–193. Princeton University Press, Princeton (2000)

  17. Delzant, T.: L’invariant de Bieri–Neumann–Strebel des groupes fondamentaux des variétés kählériennes. Math. Ann. 348, 119–125 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deroin, B., Navas, A., Rivas, C.: Groups, orders, and dynamics. arXiv:1408.5805v2

  19. Dieudonné, J.: Les déterminants sur un corps non commutatif. Bull. Soc. Math. Fr. 71, 27–45 (1943)

    Article  MATH  Google Scholar 

  20. Dowdall, S., Kapovich, I., Leininger, C.J.: Unbounded asymmetry of stretch factors. C. R. Math. Acad. Sci. Paris 352, 885–887 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dowdall, S., Kapovich, I., Leininger, C.J.: Dynamics on free-by-cyclic groups. Geom. Topol. 19, 2801–2899 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dowdall, S., Kapovich, I., Leininger, C.J.: Endomorphisms, train track maps, and fully irreducible monodromies. Groups Geom. Dyn. 11, 1179–1200 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dowdall, S., Kapovich, I., Leininger, C.J.: McMullen polynomials and Lipschitz flows for free-by-cyclic groups. J. Eur. Math. Soc. 19, 3253–3353 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dowdall, S., Taylor, S.J.: Hyperbolic extensions of free groups. Geom. Topol. 22, 517–570 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Droms, C.G.A.: Graph groups. ProQuest LLC, Ann Arbor, MI, 1983. Thesis (Ph.D.)–Syracuse University

  26. Friedl, S., Lück, W.: Universal \(L^2\)-torsion, polytopes and applications to 3-manifolds. Proc. Lond. Math. Soc. (3) 114, 1114–1151 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Friedl, S., Lück, W., Tillmann, S.: Groups and polytopes. arXiv:1611.01857

  28. Friedl, S., Tillmann, S.: Two-generator one-relator groups and marked polytopes. arXiv:1501.03489

  29. Funke, F.: The \(L^2\)-torsion polytope of amenable groups. Doc. Math. 23, 1969–1993 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Funke, F., Kielak, D.: Alexander and Thurston norms, and the Bieri–Neumann–Strebel invariants for free-by-cyclic groups. Geom. Topol. 22, 2647–2696 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Garille, S.G., Meier, J.: Whitehead graphs and the \(\Sigma ^1\)-invariants of infinite groups. Int. J. Algebra Comput. 8, 23–34 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Geoghegan, R., Mihalik, M.L., Sapir, M., Wise, D.T.: Ascending HNN extensions of finitely generated free groups are Hopfian. Bull. Lond. Math. Soc. 33, 292–298 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hillman, J.A.: On \(4\)-manifolds homotopy equivalent to surface bundles over surfaces. Topol. Appl. 40, 275–286 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Koban, N., McCammond, J., Meier, J.: The BNS-invariant for the pure braid groups. Groups Geom. Dyn. 9, 665–682 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Koban, N., Piggott, A.: The Bieri–Neumann–Strebel invariant of the pure symmetric automorphisms of a right-angled Artin group. Ill. J. Math. 58, 27–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kochloukova, D.H.: Some Novikov rings that are von Neumann finite. Comment. Math. Helv. 81, 931–943 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kochloukova, D.H.: On subdirect products of type \({\rm FP}_m\) of limit groups. J. Group Theory 13, 1–19 (2010)

    Article  MathSciNet  Google Scholar 

  38. Linnell, P., Okun, B., Schick, T.: The strong Atiyah conjecture for right-angled Artin and Coxeter groups. Geom. Dedicata 158, 261–266 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Linnell, P.A.: Division rings and group von Neumann algebras. Forum Math. 5, 561–576 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lück, W.: \(L^2\)-invariants: theory and applications to geometry and \(K\)-theory. In: Volume 44 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin (2002)

  41. Mal’cev, A.I.: On the embedding of group algebras in division algebras. Dokl. Akad. Nauk SSSR (N.S.) 60, 1499–1501 (1948)

    MathSciNet  Google Scholar 

  42. McMullen, C.T.: The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology. Ann. Sci. École Norm. Sup. (4) 35, 153–171 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Meier, J., VanWyk, L.: The Bieri–Neumann–Strebel invariants for graph groups. Proc. Lond. Math. Soc. (3) 71, 263–280 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Moise, E.E.: Affine structures in \(3\)-manifolds V The triangulation theorem and Hauptvermutung. Ann. Math. (2) 56, 96–114 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  45. Neumann, B.H.: On ordered division rings. Trans. Am. Math. Soc. 66, 202–252 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ollivier, Y., Wise, D.T.: Cubulating random groups at density less than \(1/6\). Trans. Am. Math. Soc. 363, 4701–4733 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Orlandi-Korner, L.A.: The Bieri–Neumann–Strebel invariant for basis-conjugating automorphisms of free groups. Proc. Am. Math. Soc. 128, 1257–1262 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Passman, D.S.: The Algebraic Structure of Group Rings. Robert E. Krieger Publishing Co., Inc., Melbourne (1985). (Reprint of the 1977 original)

    MATH  Google Scholar 

  49. Schick, T.: Erratum: “Integrality of \(L^2\)-Betti numbers”. Math. Ann. 322, 421–422 (2002)

    Article  MathSciNet  Google Scholar 

  50. Schreve, K.: The strong Atiyah conjecture for virtually cocompact special groups. Math. Ann. 359, 629–636 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sikorav, J.-C.: Homologie de Novikov associée à une classe de cohomologie réelle de degré un. Thèse Orsay (1987)

  52. Stein, M.: Groups of piecewise linear homeomorphisms. Trans. Am. Math. Soc. 332, 477–514 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tamari, D.: A refined classification of semi-groups leading to generalized polynomial rings with a generalized degree concept. In: Proceedings of the International Congress of Mathematicians, 1954, Vol. 1, pp. 439–440. North-Holland, Amsterdam (1957)

  54. Thurston, William P.: A norm for the homology of \(3\)-manifolds. Mem. Am. Math. Soc. 59(1986), i–vi and 99–130

  55. Tischler, D.: On fibering certain foliated manifolds over \(S^{1}\). Topology 9, 153–154 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wall, C.T.C.: Poincaré complexes. I. Ann. Math. (2) 86, 213–245 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wegner, C.: \(L^2\)-invariants of finite aspherical CW-complexes. Manuscr. Math. 128, 469–481 (2009)

    Article  MATH  Google Scholar 

  58. Zaremsky, M.C.B.: HNN decompositions of the Lodha–Moore groups, and topological applications. J. Topol. Anal. 8, 627–653 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zaremsky, M.C.B.: On normal subgroups of the braided Thompson groups. Groups Geom. Dyn. 12, 65–92 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Kai-Uwe Bux for comments on an earlier version of the article, as well as Stefan Friedl, Fabian Henneke, Wolfgang Lück, and Stefan Witzel for helpful discussions. The author was supported by the Priority Programme 2026 ‘Geometry at infinity’ of the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawid Kielak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kielak, D. The Bieri–Neumann–Strebel invariants via Newton polytopes. Invent. math. 219, 1009–1068 (2020). https://doi.org/10.1007/s00222-019-00919-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-019-00919-9

Navigation