Depth functions of symbolic powers of homogeneous ideals

  • Hop Dang Nguyen
  • Ngo Viet TrungEmail author


This paper addresses the problem of comparing minimal free resolutions of symbolic powers of an ideal. Our investigation is focused on the behavior of the function \({{\,\mathrm{depth}\,}}R/I^{(t)} = \dim R -{{\,\mathrm{pd}\,}}I^{(t)} - 1\), where \(I^{(t)}\) denotes the t-th symbolic power of a homogeneous ideal I in a noetherian polynomial ring R and \({{\,\mathrm{pd}\,}}\) denotes the projective dimension. It has been an open question whether the function \({{\,\mathrm{depth}\,}}R/I^{(t)}\) is non-increasing if I is a squarefree monomial ideal. We show that \({{\,\mathrm{depth}\,}}R/I^{(t)}\) is almost non-increasing in the sense that \({{\,\mathrm{depth}\,}}R/I^{(s)} \ge {{\,\mathrm{depth}\,}}R/I^{(t)}\) for all \(s \ge 1\) and \(t \in E(s)\), where
$$\begin{aligned} E(s) = \bigcup _{i \ge 1}\{t \in {\mathbb {N}}|\ i(s-1)+1 \le t \le is\} \end{aligned}$$
(which contains all integers \(t \ge (s-1)^2+1\)). The range E(s) is the best possible since we can find squarefree monomial ideals I such that \({{\,\mathrm{depth}\,}}R/I^{(s)} < {{\,\mathrm{depth}\,}}R/I^{(t)}\) for \(t \not \in E(s)\), which gives a negative answer to the above question. Another open question asks whether the function \({{\,\mathrm{depth}\,}}R/I^{(t)}\) is always constant for \(t \gg 0\). We are able to construct counter-examples to this question by monomial ideals. On the other hand, we show that if I is a monomial ideal such that \(I^{(t)}\) is integrally closed for \(t \gg 0\) (e.g. if I is a squarefree monomial ideal), then \({{\,\mathrm{depth}\,}}R/I^{(t)}\) is constant for \(t \gg 0\) with
$$\begin{aligned} \lim _{t \rightarrow \infty }{{\,\mathrm{depth}\,}}R/I^{(t)} = \dim R - \dim \oplus _{t \ge 0}I^{(t)}/{\mathfrak {m}}I^{(t)}. \end{aligned}$$
Our last result (which is the main contribution of this paper) shows that for any positive numerical function \(\phi (t)\) which is periodic for \(t \gg 0\), there exist a polynomial ring R and a homogeneous ideal I such that \({{\,\mathrm{depth}\,}}R/I^{(t)} = \phi (t)\) for all \(t \ge 1\). As a consequence, for any non-negative numerical function \(\psi (t)\) which is periodic for \(t \gg 0\), there is a homogeneous ideal I and a number c such that \({{\,\mathrm{pd}\,}}I^{(t)} = \psi (t) + c\) for all \(t \ge 1\).


Symbolic power Projective dimension Depth Asymptotic behavior Monomial ideal Integrally closed ideal Degree complex Local cohomology Bertini-type theorem System of linear diophantine inequalities 

Mathematics Subject Classification

13C15 14B05 



Hop Dang Nguyen is partially supported by Project CT 0000.03/19-21 of Vietnam Academy of Science and Technology. Ngo Viet Trung is partially supported by Vietnam National Foundation for Science and Technology Development. Part of this work was done during research stays of the authors at Vietnam Institute for Advanced Study in Mathematics. The authors would like to thank Huy Tài Hà and Tran Nam Trung for their collaboration on the joint paper [11] which initiated this work. They are also grateful to the referee for many suggestions which help improve the presentation of the paper. After the revision of this paper, the authors have been informed that Theorem 2.7 has been recently obtained in a modified form by different methods by J. Montano and L. Nunez-Betancourt (arXiv:1809.02308) and S. A. Seyed Fakhari (arXiv:1812.03742).


  1. 1.
    Bandari, S., Herzog, J., Hibi, T.: Monomial ideals whose depth function has any given number of strict local maxima. Ark. Mat. 52, 11–19 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Björner, A.: Topological methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, pp. 1819–1872. Birkhäuser, North-Holland (1995)Google Scholar
  3. 3.
    Brodmann, M.: The asymptotic nature of the analytic spread. Math. Proc. Camb. Philos. Soc. 86(1), 35–39 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bruns, W., Vetter, U.: Determinantal Rings. Lecture Notes in Mathematics, vol. 1327. Springer, Berlin (1980)zbMATHGoogle Scholar
  6. 6.
    Constantinescu, A., Pournaki, M.R., Seyed Fakhari, S.A., Terai, N., Yassemi, S.: Cohen–Macaulayness and limit behavior of depth for powers of cover ideals. Commun. Algebra 43, 143–157 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cutkosky, S.D.: Symbolic algebras of monomial primes. J. Reine Angew. Math. 416, 71–89 (1991)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ein, L., Lazarsfeld, R., Smith, K.: Uniform bounds and symbolic powers on smooth varieties. Invent. Math. 144, 241–252 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Eisenbud, D., Hochster, M.: A Nullstellensatz with nilpotents and Zariski’s main lemma on holomorphic functions. J. Algebra 58, 157–161 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eisenbud, D., Mazur, B.: Evolutions, symbolic squares, and fitting ideals. J. Reine Angew. Math. 488, 189–201 (1997)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hà, H.T., Nguyen, H.D., Trung, N.V., Trung, T.N.: Depth functions of powers of homogeneous ideals, Preprint, arXiv:1904.07587
  12. 12.
    Hà, H.T., Trung, N.V.: Membership criteria and containments of powers of monomial ideals. Acta Math. Vietnam 44, 117–139 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Herzog, J., Hibi, T.: The depth of powers of an ideal. J. Algebra 291, 534–550 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Herzog, J., Hibi, T., Trung, N.V.: Symbolic powers of monomial ideals and vertex power algebras. Adv. Math. 210, 304–322 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Herzog, J., Qureshi, A.A.: Persistence and stability properties of powers of ideals. J. Pure Appl. Algebra 229, 530–542 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hien, H.T.T., Lam, H.M., Trung, N.V.: Saturation and associated primes of powers of edge ideals. J. Algebra 439, 225–244 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hoa, L.T., Kimura, K., Terai, N., Trung, T.N.: Stability of depths of symbolic powers of Stanley–Reisner ideals. J. Algebra 473, 307–323 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hoa, L.T., Tam, N.D.: On some invariants of a mixed product of ideals. Arch. Math. 94, 327–337 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hoa, L.T., Trung, T.N.: Partial Castelnuovo–Mumford regularities of sums and intersections of powers of monomial ideals. Math. Proc. Camb. Philos. Soc. 149, 1–18 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hochster, M.: Rings of invariants of Tori, Cohen–Macaulay rings generated by monomials, and polytopes. Ann. Math. 96, 318–337 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hochster, M., Huneke, C.: Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147, 349–369 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Huneke, C.: On the finite generation of symbolic blow-ups. Math. Z. 179, 465–472 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings and Modules. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  24. 24.
    Kaiser, T., Stehlik, M., Skrekovski, R.: Replication in critical graphs and the persistence of monomial ideals. J. Combin. Theory Ser. A 123, 239–251 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kimura, K., Terai, N., Yassemi, S.: The projective dimension of symbolic powers of the edge ideal of a very well-covered graph. Nagoya Math. J. 230, 160–179 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Matsuda, K., Suzuki, T., Tsuchiya, A.: Nonincreasing depth functions of monomial ideals. Glasgow Math. J. 60, 505–511 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Minh, N.C., Trung, N.V.: Cohen–Macaulayness of monomial ideals and symbolic powers of Stanley–Reisner ideals. Adv. Math. 226, 1285–1306 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Morey, S., Villarreal, R.H.: Edge ideals: algebraic and combinatorial properties. In: Francisco, C., Klinger, L.C., Sather-Wastaff, S., Vassilev, J.C. (eds.) Progress in Commutative Algebra, Combinatorics and Homology, vol. 1, pp. 85–126. De Gruyter, Berlin (2012)Google Scholar
  29. 29.
    Nhi, D.V.: Specializations of direct limits and of local cohomology modules. Proc. Edinb. Math. Soc. 50, 459–475 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Nhi, D.V., Trung, N.V.: Specialization of modules. Commun. Algebra 27, 2959–2978 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Roberts, P.: A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian. Proc. Am. Math. Soc. 94, 589–592 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Schrijver, A.: The Theory of Linear and Integer Programming. Wiley, New York (1999)Google Scholar
  33. 33.
    Seidenberg, A.: The hyperplane sections of normal varieties. Trans. Am. Math. Soc. 69, 357–386 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Takayama, Y.: Combinatorial characterizations of generalized Cohen–Macaulay monomial ideals. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 48, 327–344 (2005)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Terai, N., Trung, N.V.: On the associated primes and the depth of the second power of squarefree monomial ideals. J. Pure Appl. Algebra 218, 1117–1129 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Terai, N., Trung, N.V.: Cohen–Macaulayness of large powers of Stanley–Reisner ideals. Adv. Math. 229, 711–730 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Trung, N.V.: Über die Übertragung der Ringeigenschaften zwischen \(R\) und \(R[u]/(F)\). Math. Nachr. 92, 215–224 (1978)CrossRefzbMATHGoogle Scholar
  38. 38.
    Trung, N.V.: Squarefree monomial ideals and hypergraphs, Lectures Report to AIM, Workshop on Integral Closure, Adjoint Ideals and Cores, Palo Alto (2006).
  39. 39.
    Trung, N.V.: Hypergraphs, polyhedra and monomial ideals. In: Proceedings of the 5th Joint Japan–Vietnam on Commutative Algebra, Institute of Mathematics, Hanoi, pp 15–29 (2010)Google Scholar
  40. 40.
    Trung, N.V., Ikeda, S.: When is the Rees algebra Cohen–Macaulay? Commun. Algebra 17, 2893–2922 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Varbaro, M.: Symbolic powers and matroids. Proc. Am. Math. Soc. 139, 2357–2366 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.International Centre for Research and Postgraduate Training, Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations