Abstract
We prove that not every metric space embeds coarsely into an Alexandrov space of nonpositive curvature. This answers a question of Gromov (Geometric group theory, Cambridge University Press, Cambridge, 1993) and is in contrast to the fact that any metric space embeds coarsely into an Alexandrov space of nonnegative curvature, as shown by Andoni et al. (Ann Sci Éc Norm Supér (4) 51(3):657–700, 2018). We establish this statement by proving that a metric space which is q-barycentric for some \(q\in [1,\infty )\) has metric cotype q with sharp scaling parameter. Our proof utilizes nonlinear (metric space-valued) martingale inequalities and yields sharp bounds even for some classical Banach spaces. This allows us to evaluate the bi-Lipschitz distortion of the \(\ell _\infty \) grid \([m]_\infty ^n=(\{1,\ldots ,m\}^n,\Vert \cdot \Vert _\infty )\) into \(\ell _q\) for all \(q\in (2,\infty )\), from which we deduce the following discrete converse to the fact that \(\ell _\infty ^n\) embeds with distortion O(1) into \(\ell _q\) for \(q=O(\log n)\). A rigidity theorem of Ribe (Ark Mat 14(2):237–244, 1976) implies that for every \(n\in {\mathbb {N}}\) there exists \(m\in {\mathbb {N}}\) such that if \([m]_\infty ^n\) embeds into \(\ell _q\) with distortion O(1), then q is necessarily at least a universal constant multiple of \(\log n\). Ribe’s theorem does not give an explicit upper bound on this m, but by the work of Bourgain (Geometrical aspects of functional analysis (1985/86), Springer, Berlin, 1987) it suffices to take \(m=n\), and this was the previously best-known estimate for m. We show that the above discretization statement actually holds when m is a universal constant.
This is a preview of subscription content, access via your institution.
Notes
Strictly speaking, the above definition is of Alexandrov spaces of global nonpositive curvature, also known as \(\text {CAT}(0)\) spaces or Hadamard spaces. See [27] for the local counterpart of this definition; we will not treat it here, and therefore it will be convenient to drop the term “global” throughout the present text, because the ensuing results are vacuously false under the weaker local assumption (since the 1-dimensional simplicial complex that is associated to any connected combinatorial graph is an Alexandrov space of local nonpositive curvature). For nonnegative curvature, the local and global notions coincide due to the (metric version of the) Alexandrov–Toponogov theorem; see e.g. [152].
In addition to the usual “\(O(\cdot ),o(\cdot )\)” asymptotic notation, it will be convenient to use throughout this article the following (also standard) asymptotic notation. Given two quantities \(Q,Q'>0\), the notations \(Q\lesssim Q'\) and \(Q'\gtrsim Q\) mean that \(Q\leqslant CQ'\) for some universal constant \(C>0\). The notation \(Q\asymp Q'\) stands for \((Q\lesssim Q') \wedge (Q'\lesssim Q)\). If we need to allow for dependence on parameters, we indicate this by subscripts. For example, in the presence of auxiliary objects (e.g. numbers or spaces) \(\phi ,\mathfrak {Z}\), the notation \(Q\lesssim _{\phi ,\mathfrak {Z}} Q'\) means that \(Q\leqslant C(\phi ,\mathfrak {Z})Q' \), where \(C(\phi ,\mathfrak {Z}) >0\) is allowed to depend only on \(\phi ,\mathfrak {Z}\); similarly for the notations \(Q\gtrsim _{\phi ,\mathfrak {Z}} Q'\) and \(Q\asymp _{\phi ,\mathfrak {Z}} Q'\).
Specifically, in [71, §15(b)] Gromov wrote “The geodesic property is one logical level up from concentration inequalities as it involves the existential quantifier. It is unclear if there is a simple \(\exists \)-free description of (nongeodesic!) subspaces in \(\text {CAT}(\kappa )\)-spaces.” The term “concentration inequalities” is defined in [71, §15(a)] to be the same inequalities as the quadratic metricinequalities that we consider in (12), except that in [71] they are allowed to involve arbitrary powers of the pairwise distances. However, due to [4] it suffices to consider only quadratic inequalities for the purpose of the simple intrinsic description that Gromov hopes to obtain (though, as he indicates, it may not exist).
This demonstrates that the role of the scaling parameter in the definition of metric cotype is not as subsidiary as it may seem from [121], where it did not have a crucial role in the metric characterization of Rademacher cotype or the nonlinear Maurey–Pisier theorem. While sharp metric cotype was shown in [121] to have implications to coarse and uniform embeddings, there is a definite possibility that metric cotype q and sharp metric cotype q coincide for Banach spaces (though this is a major open problem); here we see that this is markedly not so in the setting of Alexandrov geometry, leading to formidable qualitative differences between the coarse implications of the sign of curvature.
In terms of bi-Lipschitz distortion of arbitrary expanders, Table 1 does not fully indicate the extent to which nonnegative curvature behaves better than nonpositive curvature. The fact [141] that an Alexandrov space of nonnegative curvature has Markov type 2 implies (by examining the standard random walk on the graph) that if \(\mathcal {G}=\{\mathsf {G}(n)\}_{n=1}^\infty \) is an expander, then \(\mathsf {c}_X(\mathsf {G}(n))\gtrsim _{\mathcal {G}} \sqrt{\log |\mathsf {G}(n)|}\) for any nonnegatively curved Alexandrov space X. In contrast, there is [96] an Alexandrov space of nonpositive curvature which contains an expander with O(1) distortion.
The only additional observation that is needed for this is that, because the degree of \(\mathsf {G}(n)\) is O(1), a quick and standard counting argument (see e.g. the justification of equation (36) in [134]) shows that \(d_{\mathsf {G}(n)}(u,v)\gtrsim \log |C_j(n)|\rightarrow \infty \) for a constant fraction of \((u,v)\in C_j(n)\times C_j(n)\).
References
Aharoni, I., Maurey, B., Mityagin, B.S.: Uniform embeddings of metric spaces and of Banach spaces into Hilbert spaces. Isr. J. Math. 52(3), 251–265 (1985)
Alon, N., Lubotzky, A., Wigderson, A.: Semi-direct product in groups and zig-zag product in graphs: connections and applications (extended abstract). In: 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas. NV, 2001), pp. 630–637. IEEE Computer Soc, Los Alamitos, CA (2001)
Alon, N., Milman, V.D.: \(\lambda _1,\) isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory Ser. B 38(1), 73–88 (1985)
Andoni, A., Naor, A., Neiman, O.: Snowflake universality of Wasserstein spaces. Ann. Sci. Éc. Norm. Supér. (4) 51(3), 657–700 (2018)
Andoni, A., Naor, A., Nikolov, A., Razenshteyn, I., Waingarten, E.: Locality sensitive hashing via nonlinear spectral gaps. In: STOC’18—Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 787–800. ACM, New York, (2018)
Arzhantseva, G., Delzant, T.: Examples of random groups. To appear in J. Topol. (preprint) (2011)
Arzhantseva, G., Tessera, R.: Relative expanders. Geom. Funct. Anal. 25(2), 317–341 (2015)
Austin, T., Naor, A.: On the bi-Lipschitz structure of Wasserstein spaces. Preprint (2017)
Austin, T., Naor, A., Tessera, R.: Sharp quantitative nonembeddability of the Heisenberg group into superreflexive Banach spaces. Groups Geom. Dyn. 7(3), 497–522 (2013)
Awasthi, P., Charikar, M., Krishnaswamy, R., Sinop, A.K.: Spectral embedding of k-cliques, graph partitioning and k-means. In: ITCS’16—Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pp. 301–310. ACM, New York (2016)
Ball, K.: Markov chains, Riesz transforms and Lipschitz maps. Geom. Funct. Anal. 2(2), 137–172 (1992)
Ball, K.: The Ribe programme. Astérisque, (352):Exp. No. 1047, viii, 147–159, 2013. Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043–1058
Ball, K., Carlen, E.A., Lieb, E.H.: Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math. 115(3), 463–482 (1994)
Bartal, Y., Gottlieb, L.: Approximate nearest neighbor search for \(\ell _p\)-spaces (\(2<p<\infty \)) via embeddings. In: Proceedings of LATIN 2018, volume 10807 of Lecture Notes in Computer Science, pp. 120–133. Springer (2018)
Baudier, F.: On the metric geometry of stable metric spaces. arXiv:1409.7738 (2014)
Baudier, F., Lancien, G., Motakis, P., Schlumprecht, T.: A new coarsely rigid class of Banach spaces. arXiv:1806.00702 (2018)
Baudier, F., Lancien, G., Schlumprecht, T.: The coarse geometry of Tsirelson’s space and applications. J. Am. Math. Soc. 31(3), 699–717 (2018)
Bačác, M.: Old and new challenges in Hadamard spaces. arXiv:1807.01355 (2018)
Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis. Volume 48 of American Mathematical Society Colloquium Publications, vol. 1. American Mathematical Society, Providence, RI (2000)
Berg, I.D., Nikolaev, I.G.: Quasilinearization and curvature of Aleksandrov spaces. Geom. Dedicata 133, 195–218 (2008)
Berg, I.D., Nikolaev, I.G.: Characterization of Aleksandrov spaces of curvature bounded above by means of the metric Cauchy–Schwarz inequality. Mich. Math. J. 67(2), 289–332 (2018)
Bourgain, J.: A Hausdorff–Young inequality for \(B\)-convex Banach spaces. Pac. J. Math. 101(2), 255–262 (1982)
Bourgain, J.: The metrical interpretation of superreflexivity in Banach spaces. Isr. J. Math. 56(2), 222–230 (1986)
Bourgain, J.: On lattice packing of convex symmetric sets in \({\mathbb{R}}^n\). In: Lindenstrauss, J., Milman, V.D. (eds.) Geometrical aspects of functional analysis (1985/86), volume 1267 of Lecture Notes in Mathematics, pp 5–12. Springer, Berlin (1987)
Bourgain, J.: Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms. In: Lindenstrauss, J., Milman, V.D. (eds.) Geometrical Aspects of Functional Analysis (1985/86), volume 1267 of Lecture Notes in Mathematics, pp. 157–167. Springer, Berlin (1987)
Bourgain, J., Milman, V., Wolfson, H.: On type of metric spaces. Trans. Am. Math. Soc. 294(1), 295–317 (1986)
Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1999)
Brown, N., Guentner, E.: Uniform embeddings of bounded geometry spaces into reflexive Banach space. Proc. Am. Math. Soc. 133(7), 2045–2050 (2005)
Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, volume 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001)
Burago, Y., Gromov, M., Perelman, G., Aleksandrov, A.D.: Spaces with curvatures bounded below. Uspekhi Mat. Nauk 47(2(284)), 3–51 (1992)
Butler, G.J.: Simultaneous packing and covering in euclidean space. Proc. Lond. Math. Soc. 3(25), 721–735 (1972)
Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), pp 195–199. Princeton Univ. Press, Princeton, N. J (1970)
Cheng, Q.: Sphere equivalence, property H, and Banach expanders. Studia Math. 233(1), 67–83 (2016)
Cherix, P.-A., Cowling, M., Jolissaint, P., Julg, P., Valette, A.: Groups with the Haagerup Property. Modern Birkhäuser Classics. Birkhäuser/Springer, Basel (2001). Gromov’s a-T-menability, Paperback reprint of the 2001 edition [ MR1852148]
Christiansen, T., Sturm, K.T.: Expectations and martingales in metric spaces. Stochastics 80(1), 1–17 (2008)
Clarkson, J.A.: Uniformly convex spaces. Trans. Am. Math. Soc. 40(3), 396–414 (1936)
de la Salle, M.: Towards strong Banach property (T) for \({\rm SL}(3,{{\mathbb{R}}})\). Isr. J. Math. 211(1), 105–145 (2016)
de Laat, T., de la Salle, M.: Strong property (T) for higher-rank simple Lie groups. Proc. Lond. Math. Soc. (3) 111(4), 936–966 (2015)
de Laat, T., Vigolo, F.: Superexpanders from group actions on compact manifolds. Geom. Dedicata. arXiv:1707.01399 (2017) (to appear)
Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Am. Math. Soc. 284(2), 787–794 (1984)
Doss, S.: Moyennes conditionnelles et martingales dans un espace métrique. C. R. Acad. Sci. Paris 254, 3630–3632 (1962)
Dranishnikov, A.N., Gong, G., Lafforgue, V., Yu, G.: Uniform embeddings into Hilbert space and a question of Gromov. Can. Math. Bull. 45(1), 60–70 (2002)
Émery, M.: Stochastic Calculus in Manifolds. Universitext. Springer, Berlin (1989). (With an appendix by P.-A. Meyer)
Enflo, P.: On a problem of Smirnov. Ark. Mat. 8, 107–109 (1969)
Enflo, P.: On the nonexistence of uniform homeomorphisms between \(L_{p}\)-spaces. Ark. Mat. 8, 103–105 (1969)
Enflo, P.: On infinite-dimensional topological groups. In: Séminaire sur la Géométrie des Espaces de Banach (1977–1978), pages Exp. No. 10–11, 11. École Polytech., Palaiseau (1978)
Es-Sahib, A., Heinich, H.: Barycentre canonique pour un espace métrique à courbure négative. In: Séminaire de Probabilités, XXXIII, volume 1709 of Lecture Notes in Mathematics, pp. 355–370. Springer, Berlin (1999)
Eskenazis, A., Mendel, M., Naor, A.: Diamond convexity: a bifurcation in the Ribe program (2018)
Eskenazis, A., Naor, A.: On coarse and uniform embeddings into \({L}_p\). (2018)
Fabian, M., Habala, P., Hájek, P., Montesinos Santalucía, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite-dimensional Geometry, volume 8 of CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2001)
Faraut, J., Harzallah, K.: Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier (Grenoble) 24(3), 171–217 (1974)
Ferry, S.C., Ranicki, A., Rosenberg, J.: A history and survey of the Novikov conjecture. In: Ferry, S.C., Ranicki, A., Rosenberg, J. (eds.) Novikov Conjectures, Index Theorems and Rigidity, vol. 1 (Oberwolfach, 1993), volume 226 of London Mathematical Society. Lecture Note Series, pp. 7–66. Cambridge University Press, Cambridge (1995)
Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23(98), 298–305 (1973)
Figiel, T.: On the moduli of convexity and smoothness. Studia Math. 56(2), 121–155 (1976)
Fisher, D., Nguyen, T., van Limbeek, W.: Rigidity of warped cones and coarse geometry of expanders. Adv. Math. 346, 665–718 (2019)
Foertsch, T., Lytchak, A., Schroeder, V.: Nonpositive curvature and the Ptolemy inequality. Int. Math. Res. Not. IMRN (22):Art. ID rnm100, 15 (2007)
Fujiwara, K., Toyoda, T.: Random groups have fixed points on \(\rm CAT(0)\) cube complexes. Proc. Am. Math. Soc. 140(3), 1023–1031 (2012)
Gangolli, R.: Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann. Inst. H. Poincaré Sect. B (N.S.) 3, 121–226 (1967)
Garling, D.J.H.: Stable Banach spaces, random measures and Orlicz function spaces. In: Heyer, H. (ed.) Probability Measures on Groups (Oberwolfach, 1981), volume 928 of Lecture Notes in Mathematics, pp. 121–175. Springer, Berlin (1982)
Giladi, O., Mendel, M., Naor, A.: Improved bounds in the metric cotype inequality for Banach spaces. J. Funct. Anal. 260(1), 164–194 (2011)
Giladi, O., Naor, A.: Improved bounds in the scaled Enflo type inequality for Banach spaces. Extracta Math. 25(2), 151–164 (2010)
Giladi, O., Naor, A., Schechtman, G.: Bourgain’s discretization theorem. Ann. Fac. Sci. Toulouse Math. (6) 21(4), 817–837 (2012)
Godefroy, G.: De Grothendieck à Naor: une promenade dans l’analyse métrique des espaces de Banach. Gaz. Math. 151, 13–24 (2017)
Gong, G., Yu, G.: Volume growth and positive scalar curvature. Geom. Funct. Anal. 10(4), 821–828 (2000)
Gorin, E.A.: On uniformly topological imbedding of metric spaces in Euclidean and in Hilbert space. Uspehi Mat. Nauk 14(5 (89)), 129–134 (1959)
Gromov, M.: Filling Riemannian manifolds. J. Differ. Geom. 18(1), 1–147 (1983)
Gromov, M.: Rigid transformations groups. In: Géométrie différentielle (Paris. 1986), volume 33 of Travaux en Cours, pp. 65–139. Hermann, Paris (1988)
Gromov, M.: Sign and geometric meaning of curvature. Rend. Sem. Mat. Fis. Milano 61(9–123), 1991 (1994)
Gromov, M.: Asymptotic invariants of infinite groups. In: Niblo, G.A., Roller, M.A. (eds.) Geometric Group Theory, vol. 2 (Sussex, 1991), volume 182 of London Mathematical Society. Lecture Note Series, pp. 1–295. Cambridge University Press, Cambridge (1993)
Gromov, M.: Spaces and questions. Geom. Funct. Anal. (Special Volume, Part I):118–161 (2000) (GAFA 2000 (Tel Aviv, 1999))
Gromov, M.: \({\rm CAT}(\kappa )\)-spaces: construction and concentration. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 280(Geom. i Topol. 7):100–140, 299–300 (2001)
Gromov, M.: Random walk in random groups. Geom. Funct. Anal. 13(1), 73–146 (2003)
Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, english edition (2007) (Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates)
Guentner, E., Higson, N., Weinberger, S.: The Novikov conjecture for linear groups. Publ. Math. Inst. Hautes Études Sci. 101, 243–268 (2005)
Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001)
Heinrich, S., Mankiewicz, P.: Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces. Studia Math. 73(3), 225–251 (1982)
Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. (N.S.) 43(4), 439–561 (2006)
Hrushovski, E.: Extending partial isomorphisms of graphs. Combinatorica 12(4), 411–416 (1992)
Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces, vol. II, volume 67 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham (2017) (Probabilistic methods and operator theory)
Isbell, J.R.: Uniform Spaces. Mathematical Surveys, No. 12. American Mathematical Society, Providence, RI (1964)
Izeki, H., Nayatani, S.: Combinatorial harmonic maps and discrete-group actions on Hadamard spaces. Geom. Dedicata 114, 147–188 (2005)
James, R.C.: Bases and reflexivity of Banach spaces. Ann. Math. 2(52), 518–527 (1950)
James, R.C.: A non-reflexive Banach space isometric with its second conjugate space. Proc. Natl. Acad. Sci. U.S.A. 37, 174–177 (1951)
James, R.C.: A nonreflexive Banach space that is uniformly nonoctahedral. Isr. J. Math. 18, 145–155 (1974)
James, R.C.: Nonreflexive spaces of type \(2\). Isr. J. Math. 30(1–2), 1–13 (1978)
James, R.C., Lindenstrauss, J.: The octahedral problem for Banach spaces. Various Publication Series, No. 24, pp. 100–120 (1975)
Johnson, W.B., Randrianarivony, N.L.: \(l_p (p>2)\) does not coarsely embed into a Hilbert space. Proc. Am. Math. Soc. 134(4), 1045–1050 (2006)
Kalton, N.J.: Coarse and uniform embeddings into reflexive spaces. Q. J. Math. 58(3), 393–414 (2007)
Kalton, N.J.: The nonlinear geometry of Banach spaces. Rev. Mat. Complut. 21(1), 7–60 (2008)
Kalton, N.J.: Lipschitz and uniform embeddings into \(\ell _\infty \). Fund. Math. 212(1), 53–69 (2011)
Kalton, N.J., Randrianarivony, N.L.: The coarse Lipschitz geometry of \(l_p\oplus l_q\). Math. Ann. 341(1), 223–237 (2008)
Kasparov, G., Yu, G.: The coarse geometric Novikov conjecture and uniform convexity. Adv. Math. 206(1), 1–56 (2006)
Kelleher, C., Miller, D., Osborn, T., Weston, A.: Strongly non-embeddable metric spaces. Topol. Appl. 159(3), 749–755 (2012)
Khot, S., Naor, A.: Nonembeddability theorems via Fourier analysis. Math. Ann. 334(4), 821–852 (2006)
Kleiner, B., Leeb, B.: Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Inst. Hautes Études Sci. Publ. Math. 86, 115–197 (1997)
Kondo, T.: \({\rm CAT}(0)\) spaces and expanders. Math. Z. 271(1–2), 343–355 (2012)
Krivine, J.-L., Maurey, B.: Espaces de Banach stables. Isr. J. Math. 39(4), 273–295 (1981)
Kwapień, S., Schütt, C.: Some combinatorial and probabilistic inequalities and their application to Banach space theory. Studia Math. 82(1), 91–106 (1985)
Kwapień, S., Schütt, C.: Some combinatorial and probabilistic inequalities and their application to Banach space theory. II. Studia Math. 95(2), 141–154 (1989)
Lafforgue, V.: Un renforcement de la propriété (T). Duke Math. J. 143(3), 559–602 (2008)
Lafforgue, V.: Propriété (T) renforcée banachique et transformation de Fourier rapide. J. Topol. Anal. 1(3), 191–206 (2009)
Lafforgue, V., Naor, A.: Vertical versus horizontal Poincaré inequalities on the Heisenberg group. Isr. J. Math. 203(1), 309–339 (2014)
Lafont, J.-F., Prassidis, S.: Roundness properties of groups. Geom. Dedicata 117, 137–160 (2006)
Lancien, G., Petitjean, C., Procházka, A.: On the coarse geometry of the James space. arXiv:1805.05171 (2018)
Lang, U., Pavlović, B., Schroeder, V.: Extensions of Lipschitz maps into Hadamard spaces. Geom. Funct. Anal. 10(6), 1527–1553 (2000)
Lebedeva, N., Petrunin, A.: Curvature bounded below: a definition a la Berg–Nikolaev. Electron. Res. Announc. Math. Sci. 17, 122–124 (2010)
Lee, J.R., Naor, A.: Embedding the diamond graph in \(L_p\) and dimension reduction in \(L_1\). Geom. Funct. Anal. 14(4), 745–747 (2004)
Lee, J.R., Naor, A., Peres, Y.: Trees and Markov convexity. Geom. Funct. Anal. 18(5), 1609–1659 (2009)
Lennard, C.J., Tonge, A.M., Weston, A.: Generalized roundness and negative type. Mich. Math. J. 44(1), 37–45 (1997)
Li, S.: Markov convexity and nonembeddability of the Heisenberg group. Ann. Inst. Fourier (Grenoble) 66(4), 1615–1651 (2016)
Li, S., Naor, A.: Discretization and affine approximation in high dimensions. Isr. J. Math. 197(1), 107–129 (2013)
Liao, B.: Strong Banach property (T) for simple algebraic groups of higher rank. J. Topol. Anal. 6(1), 75–105 (2014)
Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)
Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)
Matoušek, J.: On embedding expanders into \(l_p\) spaces. Isr. J. Math. 102, 189–197 (1997)
Maurey, B.: Type, cotype and \(K\)-convexity. In: Johnson, W.B., Lindenstrauss, J. (eds.) Handbook of the Geometry of Banach Spaces, vol. 2, pp. 1299–1332. North-Holland, Amsterdam (2003)
Maurey, B., Milman, V.D., Tomczak-Jaegermann, N.: Asymptotic infinite-dimensional theory of Banach spaces. In: Lindenstrauss, J., Milman, V.D. (eds.) Geometric aspects of functional analysis (Israel, 1992–1994), volume 77 of Operator Theory: Advances and Applications, pp. 149–175. Birkhäuser, Basel (1995)
Maurey, B., Pisier, G.: Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math. 58(1), 45–90 (1976)
Mendel, M., Naor, A.: Some applications of Ball’s extension theorem. Proc. Am. Math. Soc. 134(9), 2577–2584 (2006)
Mendel, M., Naor, A.: Scaled Enflo type is equivalent to Rademacher type. Bull. Lond. Math. Soc. 39(3), 493–498 (2007)
Mendel, M., Naor, A.: Metric cotype. Ann. Math. (2) 168(1), 247–298 (2008)
Mendel, M., Naor, A.: Towards a calculus for non-linear spectral gaps. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, 17–19 Jan 2010, pp. 236–255 (2010)
Mendel, M., Naor, A.: Spectral calculus and Lipschitz extension for barycentric metric spaces. Anal. Geom. Metr. Spaces 1, 163–199 (2013)
Mendel, M., Naor, A.: Nonlinear spectral calculus and super-expanders. Publ. Math. Inst. Hautes Études Sci. 119, 1–95 (2014)
Mendel, M., Naor, A.: Expanders with respect to Hadamard spaces and random graphs. Duke Math. J. 164(8), 1471–1548 (2015)
Mimura, M.: Sphere equivalence, Banach expanders, and extrapolation. Int. Math. Res. Not. IMRN 12, 4372–4391 (2015)
Naor, A.: An application of metric cotype to quasisymmetric embeddings. In: Dai, X., Rong, X. (eds.) Metric and Differential Geometry, volume 297 of Progress in Mathematics, pp. 175–178. Birkhäuser/Springer, Basel (2012)
Naor, A.: An introduction to the Ribe program. Jpn. J. Math. 7(2), 167–233 (2012)
Naor, A.: Comparison of metric spectral gaps. Anal. Geom. Metr. Spaces 2, 1–52 (2014)
Naor, A.: Discrete Riesz transforms and sharp metric \(X_p\) inequalities. Ann. Math. (2) 184(3), 991–1016 (2016)
Naor, A.: A spectral gap precludes low-dimensional embeddings. In: 33rd International Symposium on Computational Geometry, volume 77 of LIPIcs. Leibniz International Proceedings in Informatics, Art. No. 50, 16. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2017)
Naor, A.: Metric dimension reduction: a snapshot of the Ribe program. In: Proceedings of the 2018 International Congress of Mathematicians, Rio de Janeiro, vol. I, pp. 759–838 (2018)
Naor, A., Rabani, Y.: On approximate nearest neighbor search in \(\ell _p\) , \(p > 2\). Unpublished manuscript, available on request (2006)
Naor, A., Rabani, Y.: On Lipschitz extension from finite subsets. Isr. J. Math. 219(1), 115–161 (2017)
Naor, A., Schechtman, G.: Metric \(X_p\) inequalities. Forum Math. Pi 4(e3), 81 (2016)
Naor, A., Schechtman, G.: Pythagorean powers of hypercubes. Ann. Inst. Fourier (Grenoble) 66(3), 1093–1116 (2016)
Naor, A., Schechtman, G.: Obstructions to metric embeddings of Schatten classes. Preprint (2018)
Naor, A., Silberman, L.: Poincaré inequalities, embeddings, and wild groups. Compos. Math. 147(5), 1546–1572 (2011)
Naor, A., Young, R.: Vertical perimeter versus horizontal perimeter. Ann. Math. (2) 188(1), 171–279 (2018)
Nowak, P.W., Yu, G.: Large Scale Geometry. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2012)
Ohta, S.-I.: Markov type of Alexandrov spaces of non-negative curvature. Mathematika 55(1–2), 177–189 (2009)
Osajda, D.: Small cancellation labellings of some infinite graphs and applications. arXiv:1406.5015 (2014)
Ostrovskii, M.I.: Metric Embeddings, volume 49 of De Gruyter Studies in Mathematics. De Gruyter, Berlin (2013). (Bilipschitz and coarse embeddings into Banach spaces)
Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)
Ozawa, N.: A note on non-amenability of \({\cal{B}}(l_p)\) for \(p=1,2\). Int. J. Math. 15(6), 557–565 (2004)
Perelman, G.: Spaces with curvature bounded below. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Zürich, 1994), pp. 517–525. Birkhäuser, Basel (1995)
Pestov, V.G.: A theorem of Hrushovski–Solecki–Vershik applied to uniform and coarse embeddings of the Urysohn metric space. Topol. Appl. 155(14), 1561–1575 (2008)
Pisier, G.: Martingales with values in uniformly convex spaces. Isr. J. Math. 20(3–4), 326–350 (1975)
Pisier, G.: Complex interpolation between Hilbert, Banach and operator spaces. Mem. Am. Math. Soc. 208(978), vi+78 (2010)
Pisier, G.: Martingales in Banach Spaces, volume 155 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2016)
Pisier, G., Xu, Q.H.: Random series in the real interpolation spaces between the spaces \(v_p\). In: Lindenstrauss, J., Milman, V.D. (eds.) Geometrical Aspects of Functional Analysis (1985/86), volume 1267 of Lecture Notes in Mathematics, pp. 185–209. Springer, Berlin (1987)
Plaut, C.: Metric spaces of curvature \(\ge k\). In: Sher, R.B., Daverman, R.J. (eds.) Handbook of Geometric Topology, pp. 819–898. North-Holland, Amsterdam (2002)
Prassidis, S., Weston, A.: Manifestations of nonlinear roundness in analysis, discrete geometry and topology. In: Arzhantseva, G., Valette, V. (eds.) Limits of Graphs in Group Theory and Computer Science, pp. 141–170. EPFL Press, Lausanne (2009)
Randrianarivony, N.L.: Characterization of quasi-Banach spaces which coarsely embed into a Hilbert space. Proc. Am. Math. Soc. 134(5), 1315–1317 (2006)
Raynaud, Y.: Espaces de Banach superstables, distances stables et homéomorphismes uniformes. Isr. J. Math. 44(1), 33–52 (1983)
Reingold, O., Vadhan, S., Wigderson, A.: Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. Math. (2) 155(1), 157–187 (2002)
Ribe, M.: On uniformly homeomorphic normed spaces. Ark. Mat. 14(2), 237–244 (1976)
Robertson, G.: Crofton formulae and geodesic distance in hyperbolic spaces. J. Lie Theory 8(1), 163–172 (1998)
Roe, J.: Lectures on Coarse Geometry. volume 31 of University Lecture Series. American Mathematical Society, Providence, RI (2003)
Roe, J.: Warped cones and property A. Geom. Topol. 9, 163–178 (2005)
Rogers, C.A.: A note on coverings and packings. J. Lond. Math. Soc. 25, 327–331 (1950)
Sato, T.: An alternative proof of Berg and Nikolaev’s characterization of \({{\rm CAT}}(0)\)-spaces via quadrilateral inequality. Arch. Math. (Basel) 93(5), 487–490 (2009)
Sawicki, D.: Super-expanders and warped cones. arXiv:1704.03865 (2017)
Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938)
Sela, Z.: Uniform embeddings of hyperbolic groups in Hilbert spaces. Isr. J. Math. 80(1–2), 171–181 (1992)
Solecki, S.: Extending partial isometries. Isr. J. Math. 150, 315–331 (2005)
Sturm, K.T.: Metric spaces of lower bounded curvature. Expos. Math. 17(1), 35–47 (1999)
Sturm, K.-T.: Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature. Ann. Probab. 30(3), 1195–1222 (2002)
Sturm, K.-T.: Probability measures on metric spaces of nonpositive curvature. In: Auscher, P., Coulhon, T., Grigor’yan, A. (eds.) Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), volume 338 of Contemporary Mathematics, pp. 357–390. American Mathematical Society, Providence, RI (2003)
Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)
Toyoda, T.: CAT(0) spaces on which a certain type of singularity is bounded. Kodai Math. J. 33(3), 398–415 (2010)
Toyoda, T.: Fixed point property for a \({{\rm CAT}}(0)\) space which admits a proper cocompact group action. Kodai Math. J. 39(1), 129–153 (2016)
Tsirelson, B.S.: It is impossible to imbed \(\ell _{p}\) or \(c_{0}\) into an arbitrary Banach space. Funkc. Anal. i Prilož. 8(2), 57–60 (1974)
Tukia, P., Väisälä, J.: Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5(1), 97–114 (1980)
Tyson, J.T., Wu, J.-M.: Characterizations of snowflake metric spaces. Ann. Acad. Sci. Fenn. Math. 30(2), 313–336 (2005)
Veomett, E., Wildrick, K.: Spaces of small metric cotype. J. Topol. Anal. 2(4), 581–597 (2010)
Vershik, A.M.: Globalization of the partial isometries of metric spaces and local approximation of the group of isometries of Urysohn space. Topol. Appl. 155(14), 1618–1626 (2008)
Vigolo, F.: Measure expanding actions, expanders and warped cones. Trans. Am. Math. Soc. 371(3), 1951–1979 (2019)
Villani, C.: Optimal Transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009). (Old and new)
Wang, M.-T.: A fixed point theorem of discrete group actions on Riemannian manifolds. J. Differ. Geom. 50(2), 249–267 (1998)
Yu, G.: The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139(1), 201–240 (2000)
Yu, G.: Hyperbolic groups admit proper affine isometric actions on \(l^p\)-spaces. Geom. Funct. Anal. 15(5), 1144–1151 (2005)
Yu, G.: Higher index theory of elliptic operators and geometry of groups. In: International Congress of Mathematicians. Vol. II, pages 1623–1639. Eur. Math. Soc., Zürich (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Alexandros Eskenazis was supported by BSF Grant 2010021 and the Simons Foundation. Manor Mendel was supported by BSF Grant 2010021. Assaf Naor was supported by NSF Grant CCF-1412958, BSF Grant 2010021, the Packard Foundation and the Simons Foundation. This work was carried out under the auspices of the Simons Algorithms and Geometry (A&G) Think Tank, and was completed while Assaf Naor was a member of the Institute for Advanced Study.
Rights and permissions
About this article
Cite this article
Eskenazis, A., Mendel, M. & Naor, A. Nonpositive curvature is not coarsely universal. Invent. math. 217, 833–886 (2019). https://doi.org/10.1007/s00222-019-00878-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-019-00878-1