The sphere covering inequality and its applications

Abstract

In this paper, we show that the total area of two distinct surfaces with Gaussian curvature equal to 1, which are also conformal to the Euclidean unit disk with the same conformal factor on the boundary, must be at least \(4 \pi \). In other words, the areas of these surfaces must cover the whole unit sphere after a proper rearrangement. We refer to this lower bound of total area as the Sphere Covering Inequality. The inequality and its generalizations are applied to a number of open problems related to Moser–Trudinger type inequalities, mean field equations and Onsager vortices, etc, and yield optimal results. In particular, we prove a conjecture proposed by Chang and Yang (Acta Math 159(3–4):215–259, 1987) in the study of Nirenberg problem in conformal geometry.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573–598 (1976)

    Article  Google Scholar 

  2. 2.

    Aubin, T.: Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire. J. Funct. Anal. 32(2), 148–174 (1979)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bandle, C.: Isoperimetric Inequalities and Applications, Volume 7 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1980)

    Google Scholar 

  4. 4.

    Bartolucci, D., De Marchis, F.: Supercritical mean field equations on convex domains and the Onsager’s statistical description of two-dimensional turbulence. Arch. Ration. Mech. Anal. 217(2), 525–570 (2015)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bartolucci, D., Lin, C.-S.: Existence and uniqueness for mean field equations on multiply connected domains at the critical parameter. Math. Ann. 359(1–2), 1–44 (2014)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bartolucci, D., Lin, C.-S., Tarantello, G.: Uniqueness and symmetry results for solutions of a mean field equation on \(\mathbb{S}^2\) via a new bubbling phenomenon. Commun. Pure Appl. Math. 64(12), 1677–1730 (2011)

    Article  Google Scholar 

  7. 7.

    Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality. Ann. Math. (2) 138(1), 213–242 (1993)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bers, L.: Local behavior of solutions of general linear elliptic equations. Commun. Pure Appl. Math. 8, 473–496 (1955)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Bol, G.: Isoperimetrische Ungleichungen für Bereiche auf Flächen. Jber. Deutsch. Math. Verein. 51, 219–257 (1941)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions of \(-\Delta u=V(x)e^u\) in two dimensions. Commun. Partial Differ. Equ. 16(8–9), 1223–1253 (1991)

    Article  Google Scholar 

  11. 11.

    Caglioti, E., Lions, P.-L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143(3), 501–525 (1992)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Caglioti, E., Lions, P.-L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. II. Commun. Math. Phys. 174(2), 229–260 (1995)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Chang, K.C., Liu, J.: On Nirenberg’s problem. Int. J. Math. 4(1), 35–58 (1993)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Chang, S.-Y.A., Chen, C.-C., Lin, C.-S.: Extremal functions for a mean field equation in two dimension. In: Chang, S.-Y.A., Lin, C.-S., Yau, H.-T. (eds.) Lectures on Partial Differential Equations, Volume 2 of New Studies in Advanced Mathematics, pp. 61–93. International Press, Somerville (2003)

    Google Scholar 

  15. 15.

    Chang, S.-Y.A., Yang, P.C.: Conformal deformation of metrics on \(S^2\). J. Differ. Geom. 27(2), 259–296 (1988)

    Article  Google Scholar 

  16. 16.

    Chang, S.-Y.A., Yang, P.C.: Prescribing Gaussian curvature on \(S^2\). Acta Math. 159(3–4), 215–259 (1987)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Chanillo, S., Kiessling, M.: Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry. Commun. Math. Phys. 160(2), 217–238 (1994)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Chen, R.M., Guo, Y., Spirn, D.: Asymptotic behavior and symmetry of condensate solutions in electroweak theory. J. Anal. Math. 117, 47–85 (2012)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Chen, W.X., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63(3), 615–622 (1991)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Chen, W.X., Li, C.: A necessary and sufficient condition for the Nirenberg problem. Commun. Pure Appl. Math. 48(6), 657–667 (1995)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Cheng, K.-S., Lin, C.-S.: On the asymptotic behavior of solutions of the conformal Gaussian curvature equations in \({ R}^2\). Math. Ann. 308(1), 119–139 (1997)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Cheng, S.Y.: Eigenfunctions and eigenvalues of Laplacian. Amer. Math. Soc. Proc. Symp. Pure Math. 27(Part II), 185–193 (1975)

  23. 23.

    Dolbeault, J., Esteban, M.J., Jankowiak, G.: The Moser–Trudinger–Onofri inequality. Chin. Ann. Math. Ser. B 36(5), 777–802 (2015)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Dolbeault, J., Esteban, M.J., Tarantello, G.: Multiplicity results for the assigned Gauss curvature problem in \(\mathbb{R}^2\). Nonlinear Anal. 70(8), 2870–2881 (2009)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Feldman, J., Froese, R., Ghoussoub, N., Gui, C.: An improved Moser–Aubin–Onofri inequality for axially symmetric functions on \(S^2\). Calc. Var. Partial Differ. Equ. 6(2), 95–104 (1998)

    MATH  Google Scholar 

  26. 26.

    Ghoussoub, N., Lin, C.-S.: On the best constant in the Moser–Onofri–Aubin inequality. Commun. Math. Phys. 298(3), 869–878 (2010)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Ghoussoub, N., Moradifam, A.: Functional Inequalities: New Perspectives and New Applications, vol. 187. American Mathematical Society, Providence (2013)

    Google Scholar 

  28. 28.

    Gui, C., Moradifam, A.: Symmetry of solutions of a mean field equation on flat torus. Int. Math. Res. Not. (2016). https://doi.org/10.1093/imrn/rnx121

  29. 29.

    Gui, C., Moradifam, A.: Uniqueness of solutions of mean field equations in \({ R}^2\). Proc. Am. Math. Soc. 146(3), 1231–1242 (2018)

    Article  Google Scholar 

  30. 30.

    Gui, C., Wei, J.: On a sharp Moser–Aubin–Onofri inequality for functions on \(S^2\) with symmetry. Pac. J. Math. 194(2), 349–358 (2000)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Hartman, P., Wintner, A.: On the local behavior of solutions of non-parabolic partial differential equations. Am. J. Math. 75, 449–476 (1953)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Kazdan, J., Warner, F.: Curvature functions for compact 2-manifolds. Ann. Math. 99, 14–47 (1974)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Kiessling, M.K.-H.: Statistical mechanics of classical particles with logarithmic interactions. Commun. Pure Appl. Math. 46(1), 27–56 (1993)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Li, Y.Y.: Harnack type inequality: the method of moving planes. Commun. Math. Phys. 200(2), 421–444 (1999)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Lin, C.-S.: Topological degree for mean field equations on \(S^2\). Duke Math. J. 104(3), 501–536 (2000)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Lin, C.-S.: Uniqueness of solutions to the mean field equations for the spherical Onsager vortex. Arch. Ration. Mech. Anal. 153(2), 153–176 (2000)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Lin, C.-S., Lucia, M.: One-dimensional symmetry of periodic minimizers for a mean field equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(2), 269–290 (2007)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1971)

  39. 39.

    Nehari, Z.: On the principal frequency of a membrane. Pac. J. Math. 2, 285–293 (1958)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Onofri, E.: On the positivity of the effective action in a theory of random surfaces. Commun. Math. Phys. 86(3), 321–326 (1982)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80(1), 148–211 (1988)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Poliakovsky, A., Tarantello, G.: On a planar Liouville-type problem in the study of selfgravitating strings. J. Differ. Equ. 252(5), 3668–3693 (2012)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Suzuki, T.: Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 9(4), 367–397 (1992)

    MathSciNet  Article  Google Scholar 

  44. 44.

    Tarantello, G.: Analytical, geometrical and topological aspects of a class of mean field equations on surfaces. Discrete Contin. Dyn. Syst. 28(3), 931–973 (2010)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Yang, Y.S.: Self-duality of the gauge field equations and the cosmological constant. Commun. Math. Phys. 162(3), 481–498 (1994)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professors Danielle Bartolucci, Alice Chang, Nassif Ghoussoub, Aleks Jevnikar, Yanyan Li, Fernando Marques, Richard Schoen, Paul Yang, etc for their interests and helpful comments on the earlier draft of the paper. The authors would also like to thank the anonymous referees for thoroughly checking the details of the manuscript and making valuble suggestions on the revision. The first author is partially supported by NSF Grant DMS-1601885. The second author is supported in part by NSF Grant DMS-1715850.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Changfeng Gui.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gui, C., Moradifam, A. The sphere covering inequality and its applications. Invent. math. 214, 1169–1204 (2018). https://doi.org/10.1007/s00222-018-0820-2

Download citation