Abstract
We consider the energy-critical wave maps equation \(\mathbb {R}^{1+2} \rightarrow \mathbb {S}^2\) in the equivariant case, with equivariance degree \(k \ge 2\). It is known that initial data of energy \(< 8\pi k\) and topological degree zero leads to global solutions that scatter in both time directions. We consider the threshold case of energy \(8 \pi k \). We prove that the solution is defined for all time and either scatters in both time directions, or converges to a superposition of two harmonic maps in one time direction and scatters in the other time direction. In the latter case, we describe the asymptotic behavior of the scales of the two harmonic maps. The proof combines the classical concentration-compactness techniques of Kenig–Merle with a modulation analysis of interactions of two harmonic maps in the absence of excess radiation.
Similar content being viewed by others
References
Bahouri, H., Gérard, P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121, 131–175 (1999)
Burq, N., Planchon, F., Stalker, J.G., Tahvildar-Zadeh, A.S.: Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203(2), 519–549 (2003)
Burq, N., Planchon, F., Stalker, J.G., Tahvildar-Zadeh, A.S.: Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J. 53(6), 1665–1680 (2004)
Chow, S.-N., Hale, J.K.: Methods of Bifurcation Theory, volume 251 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. Springer, New York (1982)
Christodoulou, D., Tahvildar-Zadeh, A.S.: On the asymptotic behavior of spherically symmetric wave maps. Duke Math. J. 71(1), 31–69 (1993)
Christodoulou, D., Tahvildar-Zadeh, A.S.: On the regularity of spherically symmetric wave maps. Commun. Pure Appl. Math. 46(7), 1041–1091 (1993)
Côte, R.: Instability of nonconstant harmonic maps for the \((1+2)\)-dimensional equivariant wave map system. Int. Math. Res. Not. 57, 3525–3549 (2005)
Côte, R.: On the soliton resolution for equivariant wave maps to the sphere. Commun. Pure Appl. Math. 68(11), 1946–2004 (2015)
Côte, R., Kenig, C., Lawrie, A., Schlag, W.: Characterization of large energy solutions of the equivariant wave map problem: I. Am. J. Math. 137(1), 139–207 (2015)
Côte, R., Kenig, C., Lawrie, A., Schlag, W.: Characterization of large energy solutions of the equivariant wave map problem: II. Am. J. Math. 137(1), 209–250 (2015)
Côte, R., Kenig, C.E., Schlag, W.: Energy partition for the linear radial wave equation. Math. Ann. 358(3–4), 573–607 (2014)
Duyckaerts, T., Jia, H., Kenig, C., Merle, F.: Universality of blow up profile for small blow up solutions to the energy critical wave map equation (2016). arXiv:1612.04927
Duyckaerts, T., Jia, H., Kenig, C.E., Merle, F.: Soliton resolution along a sequence of times for the focusing energy critical wave equation. Geom. Funct. Anal. 27(4), 798–862 (2017)
Duyckaerts, T., Kenig, C., Merle, F.: Universality of the blow-up profile for small radial type II blow-up solutions of the energy critical wave equation. J. Eur. Math. Soc. (JEMS) 13(3), 533–599 (2011)
Duyckaerts, T., Kenig, C., Merle, F.: Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geom. Funct. Anal. 22(3), 639–698 (2012)
Duyckaerts, T., Kenig, C., Merle, F.: Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case. J. Eur. Math. Soc. (JEMS) 14(5), 1389–1454 (2012)
Duyckaerts, T., Kenig, C., Merle, F.: Classification of radial solutions of the focusing, energy critical wave equation. Camb. J. Math. 1(1), 75–144 (2013)
Duyckaerts, T., Merle, F.: Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. 2008, rpn2002 (2008). https://doi.org/10.1093/imrp/rpn002
Duyckaerts, T., Merle, F.: Dynamic of threshold solutions for energy-critical NLS. Geom. Funct. Anal. 18(6), 1787–1840 (2009)
Eells, J., Wood, J.C.: Restrictions on harmonic maps of surfaces. Topology 15(3), 263–266 (1976)
Grinis, R.: Quantization of time-like energy for wave maps into spheres. Commun. Math. Phys. 352(2), 641–702 (2017)
Jendrej, J.: Construction of two-bubble solutions for energy-critical wave equations. Am. J. Math. (to appear). arXiv:1602.06524
Jendrej, J.: Nonexistence of radial two-bubbles with opposite signs for the energy-critical wave equation. Ann. Sci. Norm. Super. Pisa Cl. Sci. (to appear). arXiv:1510.03965
Jendrej, J.: Construction of two-bubble solutions for the energy-critical NLS. Anal. PDE 10(8), 1923–1959 (2017)
Jia, H., Kenig, C.: Asymptotic decomposition for semilinear wave and equivariant wave map equations. Am. J. Math. 139(6), 1521–1603 (2017)
Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)
Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)
Klainerman, S., Machedon, M.: Space-time estimates for null forms and the local existence theorem. Commun. Pure Appl. Math. 46(9), 1221–1268 (1993)
Klainerman, S., Machedon, M.: Smoothing estimates for null forms and applications. Int. Math. Res. Not. 1994(9), 383–389 (1994). https://doi.org/10.1155/S1073792894000425
Klainerman, S., Machedon, M.: Smoothing estimates for null forms and applications. Duke Math. J. 81(1), 99–133 (1995)
Klainerman, S., Machedon, M.: On the regularity properties of a model problem related to wave maps. Duke Math. J. 87(3), 553–589 (1997)
Klainerman, S., Selberg, S.: Remark on the optimal regularity for equations of wave maps type. Commun. Partial Differ. Equ. 22(5–6), 901–918 (1997)
Klainerman, S., Selberg, S.: Bilinear estimates and applications to nonlinear wave equations. Commun. Contemp. Math. 4(2), 223–295 (2002)
Krieger, J.: Global regularity of wave maps from \({ R}^{2+1}\) to \(H^2\). Small energy. Commun. Math. Phys. 250(3), 507–580 (2004)
Krieger, J.: On stability of type II blow up for the critical NLW on \(\mathbb{R}^3\) (2017). arXiv:1705.03907
Krieger, J., Nakanishi, K., Schlag, W.: Global dynamics away from the ground state for the energy-critical nonlinear wave equation. Am. J. Math. 135(4), 935–965 (2013)
Krieger, J., Nakanishi, K., Schlag, W.: Center-stable manifold of the ground state in the energy space for the critical wave equation. Math. Ann. 361(1–2), 1–50 (2015)
Krieger, J., Schlag, W.: Concentration Compactness for Critical Wave Maps. EMS Monographs. European Mathematical Society, Zürich (2012)
Krieger, J., Schlag, W., Tataru, D.: Renormalization and blow up for charge one equivariant wave critical wave maps. Invent. Math. 171(3), 543–615 (2008)
Lawrie, A., Oh, S.-J.: A refined threshold theorem for \((1+2)\)-dimensional wave maps into surfaces. Commun. Math. Phys. 342(3), 989–999 (2016)
Martel, Y., Merle, F.: Description of two soliton collision for the quartic gKdV equation. Ann. Math. (2) 174(2), 757–857 (2011)
Martel, Y., Merle, F.: Inelastic interaction of nearly equal solitons for the quartic gKdV equation. Invent. Math. 183(3), 563–648 (2011)
Planchon, F., Stalker, J.G., Tahvildar-Zadeh, A.S.: \(L^p\) estimates for the wave equation with the inverse-square potential. Discrete Cont. Dyn. Syst. 9(2), 427–442 (2003)
Raphaël, P., Rodnianski, I.: Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems. Publ. Math. Inst. Hautes Études Sci. 115, 1–122 (2012)
Raphaël, P., Szeftel, J.: Existence and uniqueness of minimal mass blow up solutions to an inhomogeneous \({L}^2\)-critical NLS. J. Am. Math. Soc. 24(2), 471–546 (2011)
Rodnianski, I., Sterbenz, J.: On the formation of singularities in the critical \({O}(3)\) \(\sigma \)-model. Ann. Math. 172, 187–242 (2010)
Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. (2) 113(1), 1–24 (1981)
Shatah, J., Tahvildar-Zadeh, A.: Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds. Commun. Pure Appl. Math. 45(8), 947–971 (1992)
Shatah, J., Tahvildar-Zadeh, A.S.: On the Cauchy problem for equivariant wave maps. Commun. Pure Appl. Math. 47(5), 719–754 (1994)
Sterbenz, J., Tataru, D.: Energy dispersed large data wave maps in \(2+1\) dimensions. Commun. Math. Phys. 1, 139–230 (2010)
Sterbenz, J., Tataru, D.: Regularity of wave maps in \(2+1\) dimensions. Commun. Math. Phys. 1, 231–264 (2010)
Struwe, M.: Equivariant wave maps in two space dimensions. Commun. Pure Appl. Math. 56(7), 815–823 (2003)
Tao, T.: Global regularity of wave maps. I. Small critical Sobolev norm in high dimension. Int. Math. Res. Not. 6, 299–328 (2001)
Tao, T.: Global regularity of wave maps II: small energy in two dimensions. Commun. Math. Phys. 224(2), 443–544 (2001)
Tao, T.: Global regularity of wave maps III–VII (2008–2009). arXiv:0805.4666, arXiv:0806.3592, arXiv:0808.0368, arXiv:0906.2833, arXiv:0908.0776
Tataru, D.: Local and global results for wave maps. I. Commun. Partial Differ. Equ. 23(9–10), 1781–1793 (1998)
Tataru, D.: On global existence and scattering for the wave maps equation. Am. J. Math. 123(1), 37–77 (2001)
Acknowledgements
J. Jendrej was supported by the ERC Grant 291214 BLOWDISOL and by the NSF Grant DMS-1463746. This work was completed during his postdoc at the University of Chicago. A. Lawrie was supported by NSF Grant DMS-1700127. We would like to thank Raphaël Côte for many helpful discussions. And lastly, we would like to thank the anonymous referees for their careful reading of an earlier version of the manuscript and for suggesting substantial improvements.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jendrej, J., Lawrie, A. Two-bubble dynamics for threshold solutions to the wave maps equation. Invent. math. 213, 1249–1325 (2018). https://doi.org/10.1007/s00222-018-0804-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-018-0804-2