Skip to main content
Log in

Two-bubble dynamics for threshold solutions to the wave maps equation

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We consider the energy-critical wave maps equation \(\mathbb {R}^{1+2} \rightarrow \mathbb {S}^2\) in the equivariant case, with equivariance degree \(k \ge 2\). It is known that initial data of energy \(< 8\pi k\) and topological degree zero leads to global solutions that scatter in both time directions. We consider the threshold case of energy \(8 \pi k \). We prove that the solution is defined for all time and either scatters in both time directions, or converges to a superposition of two harmonic maps in one time direction and scatters in the other time direction. In the latter case, we describe the asymptotic behavior of the scales of the two harmonic maps. The proof combines the classical concentration-compactness techniques of Kenig–Merle with a modulation analysis of interactions of two harmonic maps in the absence of excess radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Gérard, P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121, 131–175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burq, N., Planchon, F., Stalker, J.G., Tahvildar-Zadeh, A.S.: Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203(2), 519–549 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burq, N., Planchon, F., Stalker, J.G., Tahvildar-Zadeh, A.S.: Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J. 53(6), 1665–1680 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chow, S.-N., Hale, J.K.: Methods of Bifurcation Theory, volume 251 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. Springer, New York (1982)

    Google Scholar 

  5. Christodoulou, D., Tahvildar-Zadeh, A.S.: On the asymptotic behavior of spherically symmetric wave maps. Duke Math. J. 71(1), 31–69 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christodoulou, D., Tahvildar-Zadeh, A.S.: On the regularity of spherically symmetric wave maps. Commun. Pure Appl. Math. 46(7), 1041–1091 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Côte, R.: Instability of nonconstant harmonic maps for the \((1+2)\)-dimensional equivariant wave map system. Int. Math. Res. Not. 57, 3525–3549 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Côte, R.: On the soliton resolution for equivariant wave maps to the sphere. Commun. Pure Appl. Math. 68(11), 1946–2004 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Côte, R., Kenig, C., Lawrie, A., Schlag, W.: Characterization of large energy solutions of the equivariant wave map problem: I. Am. J. Math. 137(1), 139–207 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Côte, R., Kenig, C., Lawrie, A., Schlag, W.: Characterization of large energy solutions of the equivariant wave map problem: II. Am. J. Math. 137(1), 209–250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Côte, R., Kenig, C.E., Schlag, W.: Energy partition for the linear radial wave equation. Math. Ann. 358(3–4), 573–607 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duyckaerts, T., Jia, H., Kenig, C., Merle, F.: Universality of blow up profile for small blow up solutions to the energy critical wave map equation (2016). arXiv:1612.04927

  13. Duyckaerts, T., Jia, H., Kenig, C.E., Merle, F.: Soliton resolution along a sequence of times for the focusing energy critical wave equation. Geom. Funct. Anal. 27(4), 798–862 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duyckaerts, T., Kenig, C., Merle, F.: Universality of the blow-up profile for small radial type II blow-up solutions of the energy critical wave equation. J. Eur. Math. Soc. (JEMS) 13(3), 533–599 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duyckaerts, T., Kenig, C., Merle, F.: Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geom. Funct. Anal. 22(3), 639–698 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duyckaerts, T., Kenig, C., Merle, F.: Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case. J. Eur. Math. Soc. (JEMS) 14(5), 1389–1454 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duyckaerts, T., Kenig, C., Merle, F.: Classification of radial solutions of the focusing, energy critical wave equation. Camb. J. Math. 1(1), 75–144 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duyckaerts, T., Merle, F.: Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. 2008, rpn2002 (2008). https://doi.org/10.1093/imrp/rpn002

  19. Duyckaerts, T., Merle, F.: Dynamic of threshold solutions for energy-critical NLS. Geom. Funct. Anal. 18(6), 1787–1840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eells, J., Wood, J.C.: Restrictions on harmonic maps of surfaces. Topology 15(3), 263–266 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grinis, R.: Quantization of time-like energy for wave maps into spheres. Commun. Math. Phys. 352(2), 641–702 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jendrej, J.: Construction of two-bubble solutions for energy-critical wave equations. Am. J. Math. (to appear). arXiv:1602.06524

  23. Jendrej, J.: Nonexistence of radial two-bubbles with opposite signs for the energy-critical wave equation. Ann. Sci. Norm. Super. Pisa Cl. Sci. (to appear). arXiv:1510.03965

  24. Jendrej, J.: Construction of two-bubble solutions for the energy-critical NLS. Anal. PDE 10(8), 1923–1959 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jia, H., Kenig, C.: Asymptotic decomposition for semilinear wave and equivariant wave map equations. Am. J. Math. 139(6), 1521–1603 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Klainerman, S., Machedon, M.: Space-time estimates for null forms and the local existence theorem. Commun. Pure Appl. Math. 46(9), 1221–1268 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Klainerman, S., Machedon, M.: Smoothing estimates for null forms and applications. Int. Math. Res. Not. 1994(9), 383–389 (1994). https://doi.org/10.1155/S1073792894000425

    Article  MathSciNet  MATH  Google Scholar 

  30. Klainerman, S., Machedon, M.: Smoothing estimates for null forms and applications. Duke Math. J. 81(1), 99–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Klainerman, S., Machedon, M.: On the regularity properties of a model problem related to wave maps. Duke Math. J. 87(3), 553–589 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Klainerman, S., Selberg, S.: Remark on the optimal regularity for equations of wave maps type. Commun. Partial Differ. Equ. 22(5–6), 901–918 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Klainerman, S., Selberg, S.: Bilinear estimates and applications to nonlinear wave equations. Commun. Contemp. Math. 4(2), 223–295 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Krieger, J.: Global regularity of wave maps from \({ R}^{2+1}\) to \(H^2\). Small energy. Commun. Math. Phys. 250(3), 507–580 (2004)

    Article  MATH  Google Scholar 

  35. Krieger, J.: On stability of type II blow up for the critical NLW on \(\mathbb{R}^3\) (2017). arXiv:1705.03907

  36. Krieger, J., Nakanishi, K., Schlag, W.: Global dynamics away from the ground state for the energy-critical nonlinear wave equation. Am. J. Math. 135(4), 935–965 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Krieger, J., Nakanishi, K., Schlag, W.: Center-stable manifold of the ground state in the energy space for the critical wave equation. Math. Ann. 361(1–2), 1–50 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Krieger, J., Schlag, W.: Concentration Compactness for Critical Wave Maps. EMS Monographs. European Mathematical Society, Zürich (2012)

    Book  MATH  Google Scholar 

  39. Krieger, J., Schlag, W., Tataru, D.: Renormalization and blow up for charge one equivariant wave critical wave maps. Invent. Math. 171(3), 543–615 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lawrie, A., Oh, S.-J.: A refined threshold theorem for \((1+2)\)-dimensional wave maps into surfaces. Commun. Math. Phys. 342(3), 989–999 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Martel, Y., Merle, F.: Description of two soliton collision for the quartic gKdV equation. Ann. Math. (2) 174(2), 757–857 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Martel, Y., Merle, F.: Inelastic interaction of nearly equal solitons for the quartic gKdV equation. Invent. Math. 183(3), 563–648 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Planchon, F., Stalker, J.G., Tahvildar-Zadeh, A.S.: \(L^p\) estimates for the wave equation with the inverse-square potential. Discrete Cont. Dyn. Syst. 9(2), 427–442 (2003)

    MATH  Google Scholar 

  44. Raphaël, P., Rodnianski, I.: Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems. Publ. Math. Inst. Hautes Études Sci. 115, 1–122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Raphaël, P., Szeftel, J.: Existence and uniqueness of minimal mass blow up solutions to an inhomogeneous \({L}^2\)-critical NLS. J. Am. Math. Soc. 24(2), 471–546 (2011)

    Article  MATH  Google Scholar 

  46. Rodnianski, I., Sterbenz, J.: On the formation of singularities in the critical \({O}(3)\) \(\sigma \)-model. Ann. Math. 172, 187–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. (2) 113(1), 1–24 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shatah, J., Tahvildar-Zadeh, A.: Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds. Commun. Pure Appl. Math. 45(8), 947–971 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  49. Shatah, J., Tahvildar-Zadeh, A.S.: On the Cauchy problem for equivariant wave maps. Commun. Pure Appl. Math. 47(5), 719–754 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sterbenz, J., Tataru, D.: Energy dispersed large data wave maps in \(2+1\) dimensions. Commun. Math. Phys. 1, 139–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sterbenz, J., Tataru, D.: Regularity of wave maps in \(2+1\) dimensions. Commun. Math. Phys. 1, 231–264 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Struwe, M.: Equivariant wave maps in two space dimensions. Commun. Pure Appl. Math. 56(7), 815–823 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tao, T.: Global regularity of wave maps. I. Small critical Sobolev norm in high dimension. Int. Math. Res. Not. 6, 299–328 (2001)

    MathSciNet  MATH  Google Scholar 

  54. Tao, T.: Global regularity of wave maps II: small energy in two dimensions. Commun. Math. Phys. 224(2), 443–544 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tao, T.: Global regularity of wave maps III–VII (2008–2009). arXiv:0805.4666, arXiv:0806.3592, arXiv:0808.0368, arXiv:0906.2833, arXiv:0908.0776

  56. Tataru, D.: Local and global results for wave maps. I. Commun. Partial Differ. Equ. 23(9–10), 1781–1793 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tataru, D.: On global existence and scattering for the wave maps equation. Am. J. Math. 123(1), 37–77 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J. Jendrej was supported by the ERC Grant 291214 BLOWDISOL and by the NSF Grant DMS-1463746. This work was completed during his postdoc at the University of Chicago. A. Lawrie was supported by NSF Grant DMS-1700127. We would like to thank Raphaël Côte for many helpful discussions. And lastly, we would like to thank the anonymous referees for their careful reading of an earlier version of the manuscript and for suggesting substantial improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Lawrie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jendrej, J., Lawrie, A. Two-bubble dynamics for threshold solutions to the wave maps equation. Invent. math. 213, 1249–1325 (2018). https://doi.org/10.1007/s00222-018-0804-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-018-0804-2

Navigation